A Novel Family of Finite Automata
for Recognizing and Learning
w-Regular Languages

Yong Li, Sven Schewe and Qiyl Tang

University of Liverpool

Angluin-Style learning framework

Learning languages via membership and
equivalence gueries

Applications to verification:
* Assumptions for compositional verification [cobleigh et al 2003]

* Automata model for neural networks xu et al. 2021 : Mugkardin
et al. 2022]

Foundation of Angluin-Style learning

Myhill-Nerode theorem for a language R over 2.
U, ~u, iffforallve X . uy;veER < u,v €ER

* R I1s regular iff the number of equivalence classes
(equivalently, states) of ~ Is finite

* Defines the minimal DFA of R

Minimal DFA example

Myhill-Nerode theorem defines the minimal DFA:
U ~uy iffforallve . uy;veER < u,v €ER

a a
€]) b {_[0] R = {u € X*| the number of b's in u is 4n +
| 3 forn € N}
b b e and b can be distinguished with v = bb:
e €-bb &R

(o y——C) - b-bbeR

a a

What about w-regular languages

* Simple extension does not work for an w-language L
‘U ~ Uy IfffOI’a”WEZwul-WEL @uz W E L

* No canonical forms of deterministic automata with Buchi,
Muller, Rabin, Parity and Streett conditions

* Not easy: minimization i1s NP-complete [schewe 2010

What about w-regular languages

* w-regular expression L = Uy - V¥ + -+ U, - V¥ where
we have regular languages U; € 2%, V; € XV for1<i<n

* How about just the ultimately periodic (UP)-words (u, v)
st.u€eU; and v €V

Family of DFAs

* Family of DFAs (FDFAS) [Angluin, Boker & Fisman’ 16]

* Leading DFA for prefixes u .
* Progress DFAs for periodic words v M b

e Accept (u,v) if M(u) = M(uv) and v € L(NMW) @.@

* Normalized decompositions (u, v): N
e M(u) = M(uv)

* Example FDFA for L = X* - b
* Run over (ab,b) = a-b? is (sgS¢S1, dody) v a,b
e Runover (a,b) = a-b? is (sysg,dod;) *

Why FDFAs

* Myhill-Nerode theorem for canonical FDFAs

* L 1s w-regular Iff the number of states in its FDFA s finite

* Application to learning w-regular languages

Canonical FDFAs

* Periodic, Syntactic, and Recurrent FDFAs
* Recurrent FDFAs are more succinct

* Complexity of learning i1s polynomial in size

Our contributions

Novel canonical form called Limit FDFA:;

* Dual to Recurrent FDFAs, more succinct than others
 Lis w-regulariff its number of states Is finite

* FEasy to decide DBA-recognizable languages

10

Canonical FDFAs

Canonical FDFA F = (M, {N"}) for an w-language L
Leading DFA M for processing the finite prefix:

* Uy ~U, iffforallwez®.u,-weL S u, -welL
Normalized decomposition: M(u) = M (uv) iff u ~ uv

Progress DFA N* for accepting periodic words v € Z*:
* Similartovy = vy iffforallyeX .vy-yeV suv,-yeV
* Vary on the progress language V = L(N")

11

Ways to partition periodic words

Fix au € X7, two ways to partition periodic words in 2°

v: uv®? € L

v: uv® & L

12

Ways to partition periodic words

Fixau € X7, four blocks for periodic words in 2°

13

Progress languages for different FDFAs

Fixau € X7, the progress language V in different FDFAs

Periodic FDFA

14

Progress languages for different FDFAs

Fixau € X7, the progress language V in different FDFAs

Periodic FDFA Syntactic/Recurrent FDFA

15

Progress languages for different FDFAS

Fixau € X7, the progress language V in different FDFAs

Periodic FDFA Syntactic/Recurrent FDFA Limit FDFA

16

Limit FDFAs vs other FDFAS In size

Recurrent
FDFA

Exponentially

more succinct
¢ !

Periodic
FDFA

Syntactic
FDFA

Quadratically
more succinct Incomparable

NED

17

Myhill-Nerode theorem with Limit FDFAS

Our “Myhill-Nerode” Theorem: For an w-language L,
L I1s w-regular iff the number of states in its limit FDFA is finite

Proof idea:
* Limit FDFAs are more succinct than Syntactic FDFAs but only quadratically

more succinct
* The Myhill-Nerode theorem with Syntactic FDFAS [Maler & Staiger 97]

Theorem 1: For an w-regular language L, the limit FDFA of L
recognizes L correctly

18

Deciding DBA-recognizable languages

Blchi

~N

J

(o) =

0(n3) blow-up

[Calbrix, Nivat & Podelski 1994]

' Det.
Rabin

O(1.64n)™ in determinization
[Colcombet & Zdanowski 2009]

!

Decide DBA-recognizability

[Krishnan, Puri & Brayton 1994]

19

Deciding DBA-recognizable languages

4)

o Det.

Biichi) b
_ y,

0(n3) blow-up Q(1.64n)™ in determinization
[Calbrix, Nivat & Podelski 1994] / [Colcombet & Zdanowski 2009]

Exponential | |
b I OoOwW-u p Decide DBA-recognizability

[Krishnan, Puri & Brayton 1994]

20

Observations on DBA languages

Lemma 1: For a DBA language L, every progress DFA In its
limit FDFA either has a sink final state or no final states at all

Example language L = a® + ab®
Leading DFA Recurrent progress Limit progress DFA

DFA for aa for aa

aa a
Ny N

D) (Do :
a]:? a a@:} a,b
a aa m b

M

21

Observations on DBA languages

Lemma 1: For a DBA language L, every progress DFA In its
limit FDFA either has a sink final state or no final states at all

Example language L = a® + ab®

Leading DFA Acréept a\\ \Nords][-(i)rrnciltaprogress DFA

(e tha’(_ dO r\Ot \OOp @ a ;,
; b > : F— .;‘) a, b
@ ; @Da,b from aa o
c’t- b i “ K-{@_)_’@D a,b

Limit FDFAs for DBA languages

Theorem 2: Sink final states suffice Iff it Is DBA language

DBA-recognizable: L = ({1,2}*- (2 - 2))?

1,2

Unmark
non-sink
final states

23

Limit FDFAs for DBA languages

Theorem 2: Sink final states suffice Iff it Is DBA language

Not DBA-recognizable: L = {w € Z¢| maxinf(w) is even}

Unmark
non-sink 2,4

final states M :i
1,3

24

Deciding DBA-recognizable languages

Violation

memmmm) NO

Check sink
final states?

Sink final states retain languages?
1. Unmark non-sink final states and obtain F’

2. Check containment between NBA(F) and DBA(F")
3. If no words are missing, return YES, otherwise NO

25

summary

= Novel canonical form: Limit FDFAs

= Myhill-Nerode theorem using Limit FDFAs

= Polynomial decision procedure for DBA-languages
" Requirements to define minimal progress DFAS

= Future work:
* Empirical evaluation for learning w-regular
languages
* Learning DBAs as representation

Angluin® s learning framework

Teacher

Learner

| _
_ _ a _
_ _ ~ > _
S SRS _
| oW S | \Am./ |
| A y | Q m _
[) [A _
I) _ |
[I (S BN R S L
=
U — >
D
~
— W
S =| °
nMw S| &
A BN SRR Dm|||m.w|<||ﬁj
I I |
| © |
B .) !
1 .M . . I
| ' ' I
5| 8= o~ |
E|ilee- _
| % — ™ m —~ oo I
- S 3 3 = |
I O |
I | |
| e e _ e e e J

Output automaton A

27

