
A Novel Family of Finite Automata 
for Recognizing and Learning

ω-Regular Languages

Yong Li,  Sven Schewe and Qiyi Tang

University of Liverpool

1



Learning languages via membership and 
equivalence queries

Applications to verification:
• Assumptions for compositional verification [Cobleigh et al 2003]

• Automata model for neural networks [Xu et al. 2021 ; Muškardin

et al. 2022]

2

Angluin-Style learning framework



Myhill-Nerode theorem for a language 𝑅 over Σ:

𝑢1 ~ 𝑢2 iff for all 𝑣 ∈ Σ∗. 𝑢1𝑣 ∈ 𝑅 ⟺ 𝑢2𝑣 ∈ 𝑅

• 𝑅 is regular iff the number of equivalence classes 
(equivalently, states) of ~ is finite

• Defines the minimal DFA of 𝑅

3

Foundation of Angluin-Style learning



Myhill-Nerode theorem defines the minimal DFA:

𝑢1 ~ 𝑢2 iff for all 𝑣 ∈ Σ∗. 𝑢1𝑣 ∈ 𝑅 ⟺ 𝑢2𝑣 ∈ 𝑅

𝑅 = 𝑢 ∈ Σ∗ the number of 𝑏′𝑠 in 𝑢 is 4𝑛 +
3 for 𝑛 ∈ ℕ}

𝜖 and 𝑏 can be distinguished with 𝑣 = 𝑏𝑏:
• 𝜖 ∙ 𝑏𝑏 ∉ 𝑅
• 𝑏 ∙ 𝑏𝑏 ∈ 𝑅

4

Minimal DFA example



• Simple extension does not work for an ω-language 𝐿
• 𝑢1 ~ 𝑢2 iff for all 𝑤 ∈ Σ𝜔 . 𝑢1 ∙ 𝑤 ∈ 𝐿 ⟺ 𝑢2 ∙ 𝑤 ∈ 𝐿

• No canonical forms of deterministic automata with Büchi, 
Muller, Rabin, Parity and Streett conditions

• Not easy: minimization is NP-complete [Schewe 2010]

5

What about ω-regular languages



• ω-regular expression 𝐿 = 𝑈1 ∙ 𝑉1
𝜔 +⋯+𝑈𝑛 ∙ 𝑉𝑛

𝜔 where 
we have regular languages 𝑈𝑖 ⊆ Σ∗, 𝑉𝑖 ⊆ Σ+ for 1 ≤ 𝑖 ≤ 𝑛

• How about just the ultimately periodic (UP)-words (𝑢, 𝑣)
s.t. 𝑢 ∈ 𝑈𝑖 and 𝑣 ∈ 𝑉𝑖

6

What about ω-regular languages



• Family of DFAs (FDFAs) [Angluin, Boker & Fisman’16]

• Leading DFA for prefixes 𝑢
• Progress DFAs for periodic words 𝑣

• Accept 𝑢, 𝑣 if 𝑀 𝑢 = 𝑀(𝑢𝑣) and 𝑣 ∈ 𝐿(𝑁𝑀(𝑢))

• Normalized decompositions 𝑢, 𝑣 :
• 𝑀 𝑢 = 𝑀(𝑢𝑣)

• Example FDFA for 𝐿 = Σ∗ ∙ 𝑏𝜔

• Run over 𝑎𝑏, 𝑏 = 𝑎 ∙ 𝑏𝜔 is 𝑠0𝑠0𝑠1, 𝑑0𝑑1 

• Run over 𝑎, 𝑏 = 𝑎 ∙ 𝑏𝜔 is 𝑠0𝑠0, 𝑑0𝑑1 

7

Family of DFAs



• Myhill-Nerode theorem for canonical FDFAs

• 𝐿 is ω-regular iff the number of states in its FDFA is finite

• Application to learning ω-regular languages

8

Why FDFAs



• Periodic, Syntactic, and Recurrent FDFAs

• Recurrent FDFAs are more succinct

• Complexity of learning is polynomial in size

9

Canonical FDFAs



Novel canonical form called Limit FDFA: 

• Dual to Recurrent FDFAs, more succinct than others

• 𝐿 is ω-regular iff its number of states is finite

• Easy to decide DBA-recognizable languages 

10

Our contributions



Canonical FDFAs

Canonical FDFA 𝐹 = (𝑀, {𝑁𝑢}) for an ω-language 𝐿

Leading DFA 𝑀 for processing the finite prefix:

• 𝑢1 ~ 𝑢2 iff for all 𝑤 ∈ Σ𝜔. 𝑢1 ∙ 𝑤 ∈ 𝐿 ⟺ 𝑢2 ∙ 𝑤 ∈ 𝐿

Normalized decomposition: 𝑀 𝑢 = 𝑀(𝑢𝑣) iff 𝑢 ~ 𝑢𝑣

Progress DFA 𝑁𝑢 for accepting periodic words 𝑣 ∈ Σ∗:
• Similar to 𝑣1 ≈ 𝑣2 iff for all 𝑦 ∈ Σ∗. 𝑣1 ∙ 𝑦 ∈ 𝑉 ⟺ 𝑣2 ∙ 𝑦 ∈ 𝑉
• Vary on the progress language 𝑉 = L(𝑁𝑢 )

11



𝑣: 𝑢𝑣𝜔 ∈ ℒ

𝑣: 𝑢𝑣𝜔 ∉ ℒ

𝑣: 𝑢𝑣 ∼ 𝑢

𝑣: 𝑢𝑣 ≁ 𝑢

Fix a 𝑢 ∈ Σ∗, two ways to partition periodic words in Σ∗

Ways to partition periodic words

12



𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ≁ 𝑢

13

Ways to partition periodic words

Fix a 𝑢 ∈ Σ∗, four blocks for periodic words in Σ∗



𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ≁ 𝑢

Periodic FDFA
14

Progress languages for different FDFAs

Fix a 𝑢 ∈ Σ∗, the progress language 𝑉 in different FDFAs



Progress languages for different FDFAs

𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ≁ 𝑢

Periodic FDFA

𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ≁ 𝑢

Syntactic/Recurrent FDFA
15

Fix a 𝑢 ∈ Σ∗, the progress language 𝑉 in different FDFAs



𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∈ ℒ

∧ 𝑢𝑣 ≁ 𝑢

𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ∼ 𝑢 𝑣: 𝑢𝑣𝜔 ∉ ℒ

∧ 𝑢𝑣 ≁ 𝑢

Limit FDFAPeriodic FDFA Syntactic/Recurrent FDFA
16

Progress languages for different FDFAs

Fix a 𝑢 ∈ Σ∗, the progress language 𝑉 in different FDFAs



Limit FDFAs vs other FDFAs in size

Exponentially 
more succinct

Quadratically 
more succinct Incomparable

Periodic 
FDFA

Syntactic 
FDFA

Recurrent 
FDFA

Limit
FDFA

17



Myhill-Nerode theorem with Limit FDFAs

Our “Myhill-Nerode” Theorem: For an ω-language 𝐿,

𝐿 is ω-regular iff the number of states in its limit FDFA is finite

Proof idea: 
• Limit FDFAs are more succinct than Syntactic FDFAs but only quadratically 

more succinct
• The Myhill-Nerode theorem with Syntactic FDFAs [Maler & Staiger’97] 

18

Theorem 1: For an ω-regular language 𝐿, the limit FDFA of 𝐿
recognizes 𝐿 correctly



Deciding DBA-recognizable languages

BüchiFDFA
Det.

Rabin

Ω 1.64𝑛 𝑛 in determinization 
[Colcombet & Zdanowski 2009]

𝑂(𝑛3) blow-up 
[Calbrix, Nivat & Podelski 1994]

Decide DBA-recognizability 
[Krishnan, Puri & Brayton 1994]

19



Deciding DBA-recognizable languages

BüchiFDFA
Det.

Rabin

Ω 1.64𝑛 𝑛 in determinization 
[Colcombet & Zdanowski 2009]

𝑂(𝑛3) blow-up 
[Calbrix, Nivat & Podelski 1994]

Decide DBA-recognizability 
[Krishnan, Puri & Brayton 1994]

Exponential

blow-up 
20



Observations on DBA languages

Lemma 1: For a DBA language 𝐿, every progress DFA in its 
limit FDFA either has a sink final state or no final states at all

Leading DFA Recurrent progress 
DFA for 𝑎𝑎

Limit progress DFA 
for 𝑎𝑎

Example language 𝐿 = 𝑎𝜔 + 𝑎𝑏𝜔

21



Observations on DBA languages

Lemma 1: For a DBA language 𝐿, every progress DFA in its 
limit FDFA either has a sink final state or no final states at all

Leading DFA
Recurrent progress 
DFA for 𝑎𝑎

Limit progress DFA 
for 𝑎𝑎

Example language 𝐿 = 𝑎𝜔 + 𝑎𝑏𝜔

22



Limit FDFAs for DBA languages

Theorem 2: Sink final states suffice iff it is DBA language

DBA-recognizable: 𝐿 = {1,2}∗∙ (2 ∙ 2) 𝜔

Unmark 
non-sink 
final states

23



Limit FDFAs for DBA languages

Theorem 2: Sink final states suffice iff it is DBA language

Not DBA-recognizable: 𝐿 = 𝑤 ∈ Σ𝜔 max inf(𝑤) is even}

Unmark 
non-sink 
final states

24



Deciding DBA-recognizable languages

Limit

FDFA 𝐹
Check sink 
final states?

Violation
NO

Sink final states retain languages?
1. Unmark non-sink final states and obtain 𝐹′
2. Check containment between NBA(𝐹) and DBA(𝐹′)
3. If no words are missing, return YES, otherwise NO

25



Summary

 Novel canonical form: Limit FDFAs
 Myhill-Nerode theorem using Limit FDFAs
 Polynomial decision procedure for DBA-languages
 Requirements to define minimal progress DFAs

 Future work:
• Empirical evaluation for learning ω-regular 

languages
• Learning DBAs as representation 

26



Angluin’s learning framework

27


