A Novel Family of Finite Automata for Recognizing and Learning ω-Regular Languages

Yong Li, Sven Schewe and Qiyi Tang

University of Liverpool

Angluin-Style learning framework

Learning languages via membership and equivalence queries

Applications to verification:

- Assumptions for compositional verification [Cobleigh et al 2003]
 - Automata model for neural networks [Xu et al. 2021 ; Muškardin

et al. 2022]

Foundation of Angluin-Style learning

Myhill-Nerode theorem for a language R over Σ : $u_1 \sim u_2$ iff for all $v \in \Sigma^* \cdot u_1 v \in R \iff u_2 v \in R$

- *R* is regular iff the number of equivalence classes (equivalently, states) of \sim is finite
- Defines the minimal DFA of *R*

Minimal DFA example

Myhill-Nerode theorem defines the minimal DFA: $u_1 \sim u_2$ iff for all $v \in \Sigma^*$. $u_1 v \in R \iff u_2 v \in R$

- $R = \{u \in \Sigma^* | \text{ the number of } b's \text{ in } u \text{ is } 4n + 3 \text{ for } n \in \mathbb{N} \}$
- ϵ and b can be distinguished with v = bb:
- $\epsilon \cdot bb \notin R$
- $b \cdot bb \in R$

What about ω -regular languages

- Simple extension does not work for an ω -language L• $u_1 \sim u_2$ iff for all $w \in \Sigma^{\omega}$. $u_1 \cdot w \in L \iff u_2 \cdot w \in L$
- No canonical forms of deterministic automata with Büchi, Muller, Rabin, Parity and Streett conditions

• Not easy: minimization is NP-complete [Schewe 2010]

What about ω -regular languages

• ω -regular expression $L = U_1 \cdot V_1^{\omega} + \dots + U_n \cdot V_n^{\omega}$ where we have regular languages $U_i \subseteq \Sigma^*$, $V_i \subseteq \Sigma^+$ for $1 \le i \le n$

• How about just the ultimately periodic (UP)-words (u, v)s.t. $u \in U_i$ and $v \in V_i$

Family of DFAs

- Family of DFAs (FDFAs) [Angluin, Boker & Fisman' 16]
 - Leading DFA for prefixes *u*
 - **Progress** DFAs for periodic words v
 - Accept (u, v) if M(u) = M(uv) and $v \in L(N^{M(u)})$
- Normalized decompositions (*u*, *v*):
 - M(u) = M(uv)
- Example FDFA for $L = \Sigma^* \cdot b^{\omega}$
 - Run over $(ab, b) = a \cdot b^{\omega}$ is $(s_0 s_0 s_1, d_0 d_1)$
 - Run over $(a, b) = a \cdot b^{\omega}$ is $(s_0 s_0, d_0 d_1) \times$

- Myhill-Nerode theorem for canonical FDFAs
- *L* is ω -regular iff the number of states in its FDFA is finite
- Application to learning ω -regular languages

- Periodic, Syntactic, and Recurrent FDFAs
- Recurrent FDFAs are more succinct
- Complexity of learning is polynomial in size

Our contributions

Novel canonical form called **Limit FDFA**:

- **Dual** to Recurrent FDFAs, more succinct than others
- L is ω -regular iff its number of states is finite

• Easy to decide DBA-recognizable languages

Canonical FDFAs

Canonical FDFA $F = (M, \{N^u\})$ for an ω -language L

Leading DFA *M* for processing the finite prefix:

• $u_1 \sim u_2$ iff for all $w \in \Sigma^{\omega}$. $u_1 \cdot w \in L \iff u_2 \cdot w \in L$

Normalized decomposition: M(u) = M(uv) iff $u \sim uv$

Progress DFA N^{u} for accepting periodic words $v \in \Sigma^{*}$:

- Similar to $v_1 \approx v_2$ iff for all $y \in \Sigma^*$. $v_1 \cdot y \in V \iff v_2 \cdot y \in V$
- Vary on the progress language $V = L(N^u)$

Ways to partition periodic words

Fix a $u \in \Sigma^*$, two ways to partition periodic words in Σ^*

Ways to partition periodic words

Fix a $u \in \Sigma^*$, four blocks for periodic words in Σ^*

Progress languages for different FDFAs

Fix a $u \in \Sigma^*$, the progress language V in different FDFAs

Periodic FDFA

Progress languages for different FDFAs

Fix a $u \in \Sigma^*$, the progress language V in different FDFAs

Periodic FDFA

Syntactic/Recurrent FDFA

Progress languages for different FDFAs

Fix a $u \in \Sigma^*$, the progress language V in different FDFAs

Periodic FDFA

Syntactic/Recurrent FDFA

Limit FDFA

Limit FDFAs vs other FDFAs in size

Myhill-Nerode theorem with Limit FDFAs

Our "Myhill-Nerode" Theorem: For an ω -language *L*, *L* is ω -regular iff the number of states in its limit FDFA is finite

Proof idea:

- Limit FDFAs are more succinct than Syntactic FDFAs but only quadratically more succinct
- The Myhill-Nerode theorem with **Syntactic** FDFAs [Maler & Staiger' 97]

Theorem 1: For an ω -regular language *L*, the limit FDFA of *L* recognizes *L* correctly

Deciding DBA-recognizable languages

O(n³) blow-up [Calbrix, Nivat & Podelski 1994] $\Omega(1.64n)^n$ in determinization [Colcombet & Zdanowski 2009]

ļ

Decide DBA-recognizability [Krishnan, Puri & Brayton 1994]

Deciding DBA-recognizable languages

Observations on DBA languages

Lemma 1: For a DBA language *L*, every progress DFA in its **limit** FDFA either has a sink final state or no final states at all

Example language $L = a^{\omega} + ab^{\omega}$

Leading DFA

 \mathcal{M}

Recurrent progress DFA for *aa*

 \mathcal{N}_{R}^{aa} $\xrightarrow{\rightarrow} \overbrace{e}^{} b$ $a \xrightarrow{b} \overleftarrow{b} = a, b$

Limit progress DFA for *aa*

Observations on DBA languages

Lemma 1: For a DBA language *L*, every progress DFA in its **limit** FDFA either has a sink final state or no final states at all

Limit FDFAs for DBA languages

Theorem 2: Sink final states suffice iff it is DBA language

DBA-recognizable: $L = (\{1,2\}^* \cdot (2 \cdot 2))^{\omega}$

Limit FDFAs for DBA languages

Theorem 2: Sink final states suffice iff it is DBA language

Not DBA-recognizable: $L = \{w \in \Sigma^{\omega} | \max \inf(w) \text{ is even}\}$

Deciding DBA-recognizable languages

Sink final states retain languages?

- 1. Unmark non-sink final states and obtain F'
- 2. Check containment between NBA(F) and DBA(F')
- 3. If no words are missing, return YES, otherwise NO

Summary

- Novel canonical form: Limit FDFAs
- Myhill-Nerode theorem using Limit FDFAs
- Polynomial decision procedure for DBA-languages
- Requirements to define minimal progress DFAs
- Future work:
 - Empirical evaluation for learning $\omega\text{-regular}$ languages
 - Learning DBAs as representation

Angluin' s learning framework

