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Automata Based on SCC Decomposition

Yong Li1[0000−0002−7301−9234], Andrea Turrini1,2[0000−0003−4343−9323], Weizhi
Feng1,3[0000−0003−0710−223X],

Moshe Y. Vardi4[0000−0002−0661−5773], and Lijun Zhang1,2[0000−0002−3692−2088]

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, China

2 Institute of Intelligent Software Guangzhou, China
3 University of Chinese Academy of Sciences, China

4 Rice University, USA

Abstract. The determinization of a nondeterministic Büchi automa-
ton (NBA) is a fundamental construction of automata theory, with ap-
plications to probabilistic verification and reactive synthesis. The stan-
dard determinization constructions, such as the ones based on the Safra-
Piterman’s approach, work on the whole NBA. In this work we propose a
divide-and-conquer determinization approach. To this end, we first clas-
sify the strongly connected components (SCCs) of the given NBA as
inherently weak, deterministic accepting, and nondeterministic accept-
ing. We then present how to determinize each type of SCC independently
from the others; this results in an easier handling of the determinization
algorithm that takes advantage of the structure of that SCC. Once all
SCCs have been determinized, we show how to compose them so to ob-
tain the final equivalent deterministic Emerson-Lei automaton, which
can be converted into a deterministic Rabin automaton without blow-
up of states and transitions. We implement our algorithm in a our tool
COLA and empirically evaluate COLA with the state-of-the-art tools
Spot and Owl on a large set of benchmarks from the literature. The
experimental results show that our prototype COLA outperforms Spot
and Owl regarding the number of states and transitions.

1 Introduction

Nondeterministic Büchi automata (NBAs) [6] are finite automata accepting in-
finite words; they are a simple and popular formalism used in model checking to
represent reactive and non-terminating systems and their specifications, charac-
terized by ω-regular languages [2]. Due to their nondeterminism, however, there
are situations in which NBAs are not suitable, so deterministic automata are
required, as it happens in probabilistic verification [2] and reactive synthesis
from logical specifications [33]. Consequently, translating NBAs into equivalent
deterministic ω-automata (that is, deterministic automata accepting the same
ω-regular language) is a necessary operation for solving these problems. While
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there exists a direct translation from linear temporal logic (LTL) to deterministic
ω-automata [15], not all problems of interests can be formalized by LTL formulas,
since LTL cannot express the full class of ω-regular properties [41]. For instance,
we have to use Linear Dynamic Logic (LDL) [11, 40] instead of LTL to express
the ω-regular property “the train will arrive in every odd minute”. To the best
of our knowledge, we still need to go through the determinization of NBAs for
LDL to obtain deterministic ω-automata. Therefore, NBA determinization is
very important in verifying the whole class of ω-regular properties.

The determinization of NBAs is a fundamental problem in automata theory
that has been actively studied for decades. For the determinization of nonde-
terministic automata accepting finite words, it suffices to use a subset construc-
tion [20]. Determinization constructions for NBAs are, however, much more in-
volved since the simple subset construction is not sufficient [35]. Safra [35] gave
the first determinization construction for NBAs with the optimal complexity
2O(n logn), here n is the number of states of the input NBA; Michel [29] then
gave a lower bound n! for determinizing NBAs. Safra’s construction has been
further optimized by Piterman [32] to O((n!)2) [37], resulting in the widely known
Safra-Piterman’s construction. The Safra-Piterman’s construction is rather chal-
lenging, while still being the most practical way for Büchi complementation [39].
Research on determinization since then either aims at developing alternative
Safraless constructions [18, 21, 27] or further tightening the upper and lower
bounds of the NBA determinization [9, 25,38,42].

In this paper, we focus on the practical aspects of Büchi determinization. All
works on determinization mentioned above focus on translating NBAs to either
deterministic Rabin or deterministic parity automata. According to [36], the
more relaxed an acceptance condition is, the more succinct a finite automaton
can be, regarding the number of states. In view of this, we consider the trans-
lation of NBAs to deterministic Emerson-Lei automata (DELAs) [13,36] whose
acceptance condition is an arbitrary Boolean combination of sets of transitions
to be seen finitely or infinitely often, the most generic acceptance condition for
a deterministic automaton. We consider here transition-based automata rather
than the usual state-based automata since the former can be more succinct [12].

The Büchi determinization algorithms available in literature operate on the
whole NBA structure at once, which does not scale well in practice due to the
complex structure and the big size of the input NBA. In this work we apply
a divide-and-conquer methodology to Büchi determinization. We propose a de-
terminization algorithm for NBAs to DELAs based on their strongly connected
components (SCCs) decomposition. We first classify the SCCs of the given NBA
into three types: inherently weak, in which either all cycles do not visit accepting
transitions or all must visit accepting transitions; deterministic accepting and
nondeterministic accepting, which contain an accepting transition and are de-
terministic or nondeterministic, respectively. We show how to divide the whole
Büchi determinization problem into the determinization for each type of SCCs
independently, in which the determinization for an SCC takes advantage of the
structure of that SCC. Then we show how to compose the results of the local
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determinization for each type of SCCs, leading to the final equivalent DELA.
An extensive experimental evaluation confirms that the divide-and-conquer ap-
proach pays off also for the determinization of the whole NBA.

Contributions. First, we propose a divide-and-conquer determinization algo-
rithm for NBAs, which takes advantage of the structure of different types of
SCCs and determinizes SCCs independently. Our construction builds an equiva-
lent DELA that can be converted into a deterministic Rabin automaton without
blowing up states and transitions (cf. Theorem 2). To the best of our knowledge,
we propose the first determinization algorithm that constructs a DELA from
an NBA. Second, we show that there exists a family of NBAs for which our
algorithm gives a DELA of size 2n+2 while classical works construct a DPA of
size at least n! (cf. Theorem 3). Third, we implement our algorithm in our tool
COLA and evaluate it with the state-of-the-art tools Spot [12] and Owl [23]
on a large set of benchmarks from the literature. The experiments show that
COLA outperforms Spot and Owl regarding the number of states and transi-
tions. Finally, we remark that the determinization complexity for some classes
of NBAs can be exponentially better than the known ones (cf. Corollary 1).

We defer all proofs to Appendix A.

2 Preliminaries

Let Σ be a given alphabet, i.e., a finite set of letters. A transition-based Emerson-
Lei automaton can be seen as a generalization of other types of ω-automata, like
Büchi, Rabin or parity. Formally, it is defined in the HOA format [1] as follows:

Definition 1. A nondeterministic Emerson-Lei automaton (NELA) is a tuple
A = (Q, ι, δ, Γk, p,Acc), where Q is a finite set of states; ι ∈ Q is the initial
state; δ ⊆ Q×Σ ×Q is a transition relation; Γk = {0, 1, · · · , k}, where k ∈ N,
is a set of colors; p : δ → 2Γk is a coloring function for transitions; and Acc is
an acceptance formula over Γk given by the following grammar, where x ∈ Γk:

α := tt | ff | Fin(x) | Inf(x) | α ∨ α | α ∧ α.

We remark that the colors in Γk are not required to be all used in Acc. We
call a NELA a deterministic Emerson-Lei automaton (DELA) if for each q ∈ Q
and a ∈ Σ, there is at most one q′ ∈ Q such that (q, a, q′) ∈ δ.

In the remainder of the paper, we consider δ also as a function δ : Q×Σ →
2Q such that q′ ∈ δ(q, a) whenever (q, a, q′) ∈ δ; we also write q a−→ q′ for
(q, a, q′) ∈ δ and we extend it to words u = u0u1 · · ·un ∈ Σ∗ in the natural way,

i.e., q u−→ q′ = q
u[0]−→ q1

u[1]−→ · · · u[n]−→ q′, where σ[i] denotes the element si of the
sequence of elements σ = s0s1s2 · · · at position i. We assume without loss of
generality that each automaton is complete, i.e., for each state q ∈ Q and letter
a ∈ Σ, we have δ(q, a) ̸= ∅. If it is not complete, we make it complete by adding
a fresh state q⊥ /∈ Q and redirecting all missing transitions to it.
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A run of A over an ω-word w ∈ Σω is an infinite sequence of states ρ such
that ρ[0] = ι, and for each i ∈ N, (ρ[i], w[i], ρ[i + 1]) ∈ δ.

The language L(A) of A is the set of words accepted by A, i.e., the set of words
w ∈ Σω such that there exists a run ρ of A over w such that p(inf (ρ)) |= Acc,
where inf (ρ) = { (q, a, q′) ∈ δ | ∀i ∈ N.∃j > i.(ρ[j], w[j], ρ[j + 1]) = (q, a, q′) }
and the satisfaction relation |= is defined recursively as follows: given M ⊆ Γk,

M |= tt, M |= Fin(x) iff x /∈ M , M |= α1 ∨ α2 iff M |= α1 or M |= α2,

M ̸|= ff, M |= Inf(x) iff x ∈ M , M |= α1 ∧ α2 iff M |= α1 and M |= α2.

Intuitively, a run ρ over w is accepting if the set of colors (induced by p) that
occur infinitely often in ρ satisfies the acceptance formula Acc. Here Fin(x) spec-
ifies that the color x only appears for finitely many times while Inf(x) requires
the color x to be seen infinitely often.

The more common types of ω-automata, such as Büchi, parity and Rabin can
be treated as Emerson-Lei automata with the following acceptance formulas.

Definition 2. A NELA A = (Q, ι, δ, Γk, p,Acc) is said to be

– a Büchi automaton (BA) if k = 0 and Acc = Inf(0). Transition with color
0 are usually called accepting transitions. Thus, a run ρ is accepting if
p(inf (ρ)) ∩ {0} ≠ ∅, i.e., ρ takes accepting transitions infinitely often;

– a parity automaton (PA) if k is even and Acc =
∨k/2

c=0(
∧c

i=1 Fin(2i − 1) ∧
Inf(2c)). A run ρ is accepting if the minimum color in p(inf (ρ)) is even;

– a Rabin automaton (RA) if k is an odd number and Acc = (Fin(0)∧ Inf(1))∨
· · · ∨ (Fin(k − 1) ∧ Inf(k)). Intuitively, a run ρ is accepting if there exists an
odd integer 0 < j ≤ k such that j − 1 /∈ p(inf (ρ)) and j ∈ p(inf (ρ)).

When the NELA A = (Q, ι, δ, Γk, p,Acc) is a nondeterministic BA (NBA),
we just write A as (Q, ι, δ, F ) where F is the set of accepting transitions. We
call a set C ⊆ Q a strongly connected component (SCC) of A if for every pair of
states q, q′ ∈ C, we have that q u−→ q′ for some u ∈ Σ∗ and q′ v−→ q for some
v ∈ Σ∗, i.e., q and q′ can be reached by each other; by default, each state q ∈ Q
reaches itself. C is a maximal SCC if it is not a proper subset of another SCC.
All SCCs considered in the work are maximal. We call an SCC C accepting if
there is a transition (q, a, q′) ∈ (C×Σ×C)∩F and nonaccepting otherwise. We
say that an SCC C ′ is reachable from an SCC C if there exist q ∈ C and q′ ∈ C ′

such that q u−→ q′ for some u ∈ Σ∗. An SCC C is inherently weak if either
every cycle going through the C-states visits at least one accepting transition
or none of the cycles visits an accepting transition. We say that an SCC C is
deterministic if for every state q ∈ C and a ∈ Σ, we have |δ(q, a)∩C| ≤ 1. Note
that a state q in a deterministic SCC C can have multiple successors for a letter
a, but at most one successor remains in C.

Figure 1 shows an example of NBA we will use for our examples in the
remainder of the paper; we depict the accepting transitions with a double arrow.
Clearly, inside each SCC, depicted as a box, each state can be reached by any
other state, and the SCCs are maximal. The SCC {q2, q3} is inherently weak and
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Fig. 1. An example of NBA.

accepting, since every cycle takes an accepting transition; the SCC {q6} is also
inherently weak, but nonaccepting, since every cycle never takes an accepting
transition. The remaining two SCCs, i.e., {q0, q1} and {q4, q5}, are not inherently
weak, since some cycle takes accepting transitions (like the cycle q0

a−→ q0)

while others do not (like the cycle q0
b−→ q0). Both SCCs contain an accepting

transition, so they are accepting; the SCC {q0, q1} is clearly nondeterministic,
while the SCC {q4, q5} is deterministic. Note that from q5 we have two transitions

labelled by b, but only the transition q5
b−→ q4 remains inside the SCC, while

the other transition q5
b−→ q6 leaves the SCC, so the SCC is still deterministic.

The following proposition is well known and is often used in prior works.

Proposition 1. Let A be an NBA and w ∈ Σω. A run of A over w will even-
tually stay in an SCC. Moreover, if w ∈ L(A), every accepting run of A over w
will eventually stay in an accepting SCC.

Proposition 1 is the key ingredient of our algorithm: it allows us to deter-
minize the SCCs independently as L(A) is the union of the words whose runs
stay in each accepting SCCs. In the remainder of the paper, we first present a
translation from an NBA A to a DELA AE based on the SCC decomposition of
A. The obtained DELA AE in fact can be converted to a deterministic Rabin
automaton (DRA) AR without blowing up states and transitions, i.e., we can
just convert the coloring function and the acceptance formula of AE to DRAs.

3 Determinization Algorithms of SCCs

Determinizing each SCC of A independently is not straightforward since it may
be reached from the initial state only after reading a nonempty finite word;
moreover, there can be words of different length leading to the SCC, entering
through different states. To keep track of the different arrivals in an SCC at
different times, we make use of run DAGs [24], that are a means to organize the
runs of A over a word w. In this section, we first recall the concept of run DAGs
and then describe how to determinize SCCs with their help.

Definition 3. Let A = (Q, ι, δ, F ) be an NBA and w ∈ Σω be a word. The
run DAG GA,w = ⟨V,E⟩ of A over w is defined as follows: the set of vertices
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V ⊆ Q×N is defined as V =
⋃

l≥0(Vl×{l}) where V0 = {ι} and Vl+1 = δ(Vl, w[l])
for every l ∈ N; there is an edge (⟨q, l⟩, ⟨q′, l′⟩) ∈ E if l′ = l+1 and q′ ∈ δ(q, w[l]).

Intuitively, a state q at a level ℓ may occur in several runs and only one
vertex is needed to represent it, i.e., the vertex ⟨q, ℓ⟩ who is said to be on level
ℓ. Note that by definition, there are at most |Q| vertices on each level. An edge
(⟨q, l⟩, ⟨q′, l + 1⟩) is an F -edge if (q, w[l], q′) ∈ F . An infinite sequence of vertices
γ = ⟨q0, 0⟩⟨q1, 1⟩ · · · is called an ω-branch of GA,w if q0 = ι and for each ℓ ∈ N,
we have (⟨qℓ, ℓ⟩, ⟨qℓ+1, ℓ + 1⟩) ∈ E. We can observe that there is a bijection
between the set of runs of A on w and the set of ω-branches in GA,w. In fact,
to a run ρ = q0q1 · · · of A over w corresponds the ω-branch ρ̂ = ⟨q0, 0⟩⟨q1, 1⟩ · · ·
and, symmetrically, to an ω-branch γ = ⟨q0, 0⟩⟨q1, 1⟩ · · · corresponds the run
γ̂ = q0q1 · · · . Thus w is accepted by A if and only if there exists an ω-branch in
GA,w that takes F -edges infinitely often.

In the remainder of this section, we will introduce the algorithms for comput-
ing the successors of the current states inside different types of SCCs, with the
help of run DAGs. We fix an NBA A = (Q, ι, δ, F ) and a word w ∈ Σω. We let
Q = {q1, . . . , qn} and apply a total order ≼ on Q such that qi ≼ qj if i < j. Let
Sℓ ⊆ Q, ℓ ∈ N, be the set of states reached at the level ℓ in the run DAG GA,w; we
assume that this sequence S0, · · · , Sℓ, · · · is available as a global variable during
the computations of every SCC where S0 = {ι} and Sℓ+1 = δ(Sℓ, w[ℓ]).

When determinizing the given NBA A, we classify its SCCs into three types,
namely inherently weak SCCs (IWCs), deterministic-accepting SCCs (DACs)
and nondeterministic-accepting SCCs (NACs). We assume that all DACs and
NACs are not inherently weak, otherwise they will be classified as IWCs.

In our determinization construction, every level in GA,w corresponds to a
state in our constructed DELA AE while reading the ω-word w. Let mℓ be the
state of AE at level ℓ. The computation of the successor mℓ+1 of mℓ for the letter
w[ℓ] will be divided into the successor computation for states in IWCs, DACs
and NACs independently. Then the successor mℓ+1 is just the Cartesian product
of these successors. In the remainder of this section, we present how to compute
the successors for the states in each type of SCCs.

3.1 Successor Computation inside IWCs

As we have seen, GA,w contains all runs of A over w, including those within
DACs and NACs. Since we want to compute the successor only for IWCs, we
focus on the states inside the IWCs and ignore other states in DACs and NACs.
Let W be the set of states in all IWCs and WA ⊆ W be the set of states in all
accepting IWCs.

For the run DAG GA,w, we use a pair of sets of states (Pℓ, Oℓ) ∈ 2W × 2WA

to represent the set of IWC states reached in GA,w at level ℓ. The set Pℓ is
used to keep track of the states in W reached at level ℓ, while Oℓ, inspired by the
breakpoint construction used in [30], keeps only the states reached in WA, that is,
it is used to track the runs that stay in accepting IWCs. Since by definition each
cycle inside an accepting IWC must visit an accepting transition, for each run
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tracked by Oℓ we do not need to remember whether we have taken an accepting
transition: it suffices to know whether the run is still inside some accepting IWC
or whether the run has left them.

We now show how to compute the sets (Pℓ, Oℓ) along w. For level 0, we
simply set P0 = {ι}∩W and O0 = ∅. For the other levels, given (Pℓ, Oℓ) at level
ℓ ∈ N, the encoding (Pℓ+1, Oℓ+1) for the next level ℓ + 1 is defined as follows:

– Pℓ+1 = Sℓ+1∩W, i.e., Pℓ+1 keeps track of the W-states reached at level ℓ+1;
– if Oℓ ̸= ∅, then Oℓ+1 = δ(Oℓ, w[ℓ]) ∩WA, otherwise Oℓ+1 = Pℓ+1 ∩WA.

Intuitively, the O-set keeps track of the runs that stay in the accepting IWCs.
So if Oℓ ̸= ∅, then Oℓ+1 maintains the runs remaining in some accepting IWC;
otherwise, Oℓ = ∅ means that at level ℓ all runs seen so far in the accepting
IWCs have left them, so we can just start to track the new runs that entered
the accepting IWCs but were not tracked yet.

q ∈ O

2

`

3

4

5

q2

q2q3

q2 q3q6

q2q3 q6

On the right we show the fragment of the run DAG GA,aω

for the NBA A shown in Figure 1 and its IWCs; we have
W = {q2, q3, q6} and WA = {q2, q3}. The set Pℓ contains all
states q at level ℓ; the set Oℓ contains the underlined ones. As
a concrete application of the construction given above, from
P3 = {q2, q3} and O3 = δ(O2, a) ∩ WA = {q3}, at level 4 we
get P4 = {q2, q3, q6} and O4 = δ(O3, a) ∩WA = {q2}.

It is not difficult to see that checking whether w is accepted
reduces to check whether the number of empty O-sets is finite.
We assign color 1 to the transition from (Pℓ, Oℓ) to (Pℓ+1, Oℓ+1) via w[ℓ] if Oℓ =
∅, otherwise we assign color 2. Lemma 1 formalizes the relation between accepting
runs staying in accepting IWCs and the colors we get from our construction.

Lemma 1. (1) There exists an accepting run of A over w eventually staying in
an accepting IWC if and only if we receive color 1 finitely many times when con-
structing the sequence (P0, O0) · · · (Pℓ, Oℓ) · · · while reading w. (2) The number
of possible (P,O) pairs is at most 3|W|.

The proof idea is trivial: an accepting run ρ that stays in an accepting IWC
will make the O-set contain ρ forever and we always get color 2 from some point
on. A possible pair (P,O) can be seen as choosing a state from W, which can be
from W\P , P ∩O and P \O, respectively. It thus gives at most 3|W| possibilities.
We refer to Appendix A.1 for the detailed proof of Lemma 1.

To ease the construction for the whole NBA A, we make the above com-
putation of successors available as a function weakSucc, which takes as input
a pair of sets (P,O) and a letter a, and returns the successor (P ′, O′) and the
corresponding color c ∈ {1, 2} for the transition ((P,O), a, (P ′, O′)).

The construction we gave above works on all IWCs at the same time; con-
sidering IWCs separately does not improve the resulting complexity. If there
are two accepting IWCs with n1 and n2 states, respectively, then the number
of possible (P,O) pairs for the two IWCs is 3n1 and 3n2 , respectively. When
combining the pairs for each IWC together, the resulting number of pairs in the
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Cartesian product is 3n1 × 3n2 = 3n1+n2 , which is the same as considering them
together. On the other hand, for each accepting IWC, we need to use two colors,
so we need 2 · i colors in total for i accepting IWCs, instead of just two colors by
operating on all IWCs together. Hence, we prefer to work on all IWCs at once.

3.2 Successor Computation inside DACs

In contrast to IWCs, we do not work on all DACs at once but we process each
DAC separately. This is because there may be nondeterminism between DACs: a
run in a DAC may branch into multiple runs that jump to different DACs, which
requires us to resort to a Safra-Piterman’s construction [32,35] when considering
all DACs at once. Working on each DAC separately, instead, allows us to take
advantage of the internal determinism: for a given DAC D, the transition relation
δ inside D, denoted as δD = (D×Σ × D) ∩ δ, is now deterministic.

Although every run ρ entering D can have only one successor in D, ρ may just
leave D while new runs can enter D, which makes it difficult to check whether
there exists an accepting run that remains trapped into D. In order to identify
accepting runs staying in D, we identify the following two rules for distinguishing
runs that come to D by means of unique labelling numbers: (1) the runs already
in D have precedence over newly entering runs, thus the latter get assigned a
higher number. In practice, the labelling keeps track of the relative order of
entering D, thus the lower the labelling value is, the earlier the run came to D;
(2) when two runs in D merge, we only keep the run that came to D earlier, i.e.,
the run with lower number. If two runs enter D at the same time, we let them
enter according to the total state order ≼ for their respective entry states.

We use a level-labelling function gℓ : D → {1, · · · , 2 · |D|}∪{∞} to encode the
set of D-states reached at level ℓ of the run DAG GA,w. Here we use gℓ(q) = ∞
to indicate that the state q ∈ D is not reached by A at level ℓ.

At level 0, we set g0(q) = ∞ for every state q ∈ D \ {ι}, and g0(ι) = 1 if
ι ∈ D. Note that the SCC that ι resides in can be an IWC, a DAC or a NAC.

For a given level-labelling function gℓ, we will make { q ∈ D | gℓ(q) ̸= ∞} =
Sℓ ∩ D hold, i.e., tracing correctly the set of D-states reached by A at level ℓ;
we denote the set gℓ(D) \ {∞} by β(gℓ), so β(gℓ) is the set of unique labelling
numbers at level ℓ. By the construction given below about how to generate gℓ+1

from gℓ on reading w[ℓ], we ensure that β(gℓ) ⊆ {1, · · · , 2 · |D|} for all ℓ ∈ N.
We now present how to compute the successor level-labelling function gℓ+1 of

gℓ on letter w[ℓ]. The states reached by A at level ℓ+ 1, i.e., Sℓ+1∩D, may come
from two sources: some state may come from states not in D via transitions in
δ \ δD; some other via δD from states in Sℓ ∩ D. In order to generate gℓ+1, we
first compute an intermediate level-labelling function g′ℓ+1 as follows.

1. To obey Rule (2), for every state q′ ∈ δD(Sℓ ∩ D, w[ℓ]), we set

g′ℓ+1(q′) = min{ gℓ(q) | q ∈ Sℓ ∩ D ∧ δD(q, w[ℓ]) = q′ }.

That is, when two runs merge, we only keep the run with the lower labelling
number, i.e., the run entered in D earlier.
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2. To respect Rule (1), we set g′ℓ+1(q′) = |D|+ i for the i-th newly entered state
q′ ∈ (Sℓ+1 ∩ D) \ δD(Sℓ ∩ D, w[ℓ]) and the states q′ are ordered by the total
order ≼ of the states. Since every state in δD(Sℓ ∩ D, w[ℓ]) is on a run that
already entered D, its labelling has already been determined by the case 1.

It is easy to observe that in order to compute the transition relation between two
consecutive levels, we only need to know the labelling at the previous level. More
precisely, we do not have to know the exact labelling numbers, since it suffices
to know their relative order. Therefore, we can compress the level-labelling g′ℓ+1

to gℓ+1 as follows. Let ord : β(g′ℓ+1) → {1, · · · , |β(g′ℓ+1)|} be the function that
maps each labelling value in β(g′ℓ+1) to its relative position once the values in
β(g′ℓ+1) have been sorted in ascending order. For instance, if β(g′ℓ+1) = {2, 4, 7},
then ord = {2 7→ 1, 4 7→ 2, 7 7→ 3}. Then we set gℓ+1(q) = ord(g′ℓ+1(q)) for
each q ∈ Sℓ+1 ∩ D, and gℓ+1(q′) = ∞ for each q′ ∈ D \ Sℓ+1. In this way, all
level-labelling functions gℓ we use are such that β(gℓ) ⊆ {1, · · · , |D|}.

The intuition behind the use of these level-labelling functions is that, if we
always see a labelling number h in the intermediate level-labelling g′ℓ for all ℓ ≥ k
after some level k, we know that there is a run that eventually stays in D and is
eventually always labelled with h. To check whether this run also visits infinitely
many accepting transitions, we will color every transition e = (gℓ, w[ℓ], gℓ+1). To
decide what color to assign to e, we first identify which runs have merged with
others or got out of D (corresponding to bad events and odd colors) and which
runs still continue to stay in D and take an accepting transition (corresponding
to good events and even colors).

The bad events correspond to the discontinuation of labelling values between
gℓ and g′ℓ+1, defined as B(e) = β(gℓ) \ β(g′ℓ+1). Intuitively, if a labelling value
k exists in the set B(e), then the run ρ associated with labelling k merged
with a run with lower labelling value k′ < k, or ρ left the DAC D. The good
events correspond to the occurrence of accepting transitions in some runs, whose
labelling we collect into G(e) = { k ∈ β(gℓ) | ∃(q, w[ℓ], q′) ∈ F.gℓ(q) = g′ℓ+1(q′) =
k ̸= ∞}. In practice, a labelling value k in G(e) indicates that we have seen
a run with labelling k that visits an accepting transition. We then let B(e) =
B(e) ∪ {|D| + 1} and G(e) = G(e) ∪ {|D| + 1} where the value |D| + 1 is used to
indicate that no bad (i.e., no run merged or left the DAC) or no good (i.e., no
run took an accepting transition) events happened, respectively.

In order to declare a sequence of labelling functions as accepting, we want
the good events to happen infinitely often and bad events to happen only finitely
often, when the runs with bad events have a labelling number lower than that
of the runs with good events. So we assign the color c = min{2 ·minB(e)− 1, 2 ·
minG(e)} to the transition e. Since the labelling numbers are in {1, · · · , |D|}, we
have that c ∈ {1, · · · , 2 · |D|+ 1}. The intuition why we assign colors in this way
is given as the proof idea of the following lemma.

Lemma 2. (1) An accepting run of A over w eventually stays in the DAC D
if and only if the minimal color c we receive infinitely often is even. (2) The
number of possible labelling functions g is at most 3 · |D|!.

9



The proof idea is as follows: an accepting run ρ on the word w that stays in D
will have stable labelling number, say k ≥ 1, after some level since the labelling
value cannot increase by construction and is finite. So all runs on w that have
labelling values lower than k will not leave D: if they would leave or just merge
with other runs, their labelling value vanishes, so ord would decrease the value
for ρ. This implies that the color we receive afterwards infinitely often is either
1) an odd color larger than 2k, due to vanishing runs with value at least k + 1
or simply because no bad or good events occur, or 2) an even color at most 2k,
depending on whether there is some run with value smaller than ρ also taking
accepting transitions. Thus the minimum color occurring infinitely often is even.

The number of labelling functions g is bounded by
∑|D|

i=0

(|D|
i

)
· i! ≤ 3 · |D|!. We

refer to Appendix A.2 for the detailed proof of Lemma 2.

3

`

4

5

q4, 3 7→ 1

q5, 1 7→ 1 q4, 3 7→ 2

q4, 1 7→ 1 q5, 2 7→ 2

The fragment of the DAG GA,aω shown on the
right is relative to the only DAC D = {q4, q5}. The
value of g′ℓ(q), gℓ(q) and the corresponding ord is
given by the mapping near each state q; as a concrete
application of the construction given above, consider
how to get g4 from g3, defined as g3(q4) = 1 and
g3(q5) = ∞: since q5 ∈ δD(S3 ∩ D, a), according to
case 1 we define g′4(q5) = 1 because q5 = δD(q4, a)
and g3(q4) = 1; since q4 ∈ (S4 ∩ D) \ δD(S3 ∩ D, a), then case 2 applies, so
g′4(q4) = 3. The function ord is ord = [1 7→ 1, 3 7→ 2], thus we get g4(q4) = 2
and g4(q5) = 1. As bad/good sets for the transition e = g3

a−→ g4, we have
B(e) = ∅ ∪ {3} while G(e) = {1} ∪ {3}, so the resulting color is 2.

Again, we make the above computation of successors available as a function
detSucc, which takes as input the DAC D, a labelling g and a letter a, and returns
the successor labelling g′ and the color c ∈ {1, · · · , 2 · |D| + 1}.

3.3 Successor Computation inside NACs

The computation of the successor inside a NAC is more involved since runs
can branch, so it is more difficult to check whether there exists an accepting
run. To identify accepting runs, researchers usually follow the Safra-Piterman’s
idea [32,35] to give the runs that take more accepting transitions the precedence
over other runs that join them. We now present how to compute labelling func-
tions encoding this idea for NACs, instead of the whole NBA. Differently to the
previous case about DACs, the labelling functions we use here use lists of num-
bers, instead of single numbers, to keep track of the branching, merging and new
incoming runs. This can be seen as a generalization of the numbered brackets
used in [34] to represent ordinary Safra-Piterman’s trees. Differently from this
construction, in our setting the main challenge we have to consider is how to
manage correctly the newly entering runs, which are simply not occurring in [34]
since there the whole NBA is considered. The fact that runs can merge, instead,
is a common aspect, while the fact that a run ρ leaves the current NAC can be
treated similarly to dying out runs in [34]. Below we assume that N is a given
NAC; we denote by δN = (N×Σ × N) ∩ δ the transition function δ inside N.
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To manage the branching and merging of runs of A over w inside a NAC,
and to keep track of the accepting transitions taken so far, we use level-labelling
functions as for the DAC case. For a given NAC N, the functions we use have
lists of natural numbers as codomain; more precisely, let LN be the set of lists
taking value in the set {1, · · · , 2 · |N|}, where a list is a finite sequence of values
in ascending order. Given two lists [v1, · · · , vk] and [v′1, · · · , v′k′ ], we say that
[v1, · · · , vk] is a prefix of [v′1, · · · , v′k′ ] if 1 ≤ k ≤ k′ and for each 1 ≤ j ≤ k, we
have vj = v′j . Note that the empty list is not a prefix of any list. Given two
lists [v1, · · · , vk] and [v′1, · · · , v′k′ ], we denote by [v1, · · · , vk]⌢[v′1, · · · , v′k′ ] their
concatenation, that is the list [v1, · · · , vk, v′1, · · · , v′k′ ]. Moreover, we define a total
order on lists as follows: given two lists [v1, · · · , vk] and [v′1, · · · , v′k′ ], we order
them by padding the shorter of the two with ∞ in the rear, so to make them of
the same length, and then by comparing them by the usual lexicographic order.
This means, for instance, that the empty list [] is the largest list and that [1, 3, 5]
is smaller than [1, 3] but larger than [1, 2]. The lists help to keep track of the
branching history from their prefixes, such as [1, 2] is branched from [1].

As done for DACs, we use a level-labelling function tℓ : N → LN to encode the
set of N-states reached in the run DAG GA,w at level ℓ. We denote by β(tℓ) the set
of non-empty lists in the image of tℓ, that is, β(tℓ) = { tℓ(q) | q ∈ N∧ tℓ(q) ̸= [] }.
We use the empty list [] for the states in N that do not occur in the vertexes
of GA,w at level ℓ, so β(tℓ) contains only lists associated with states that A is
currently located at. Similarly to the other types of SCCs, at level 0, we set
t0(ι) = [1] if ι ∈ N, and t0(q) = [] for each state q ∈ N \ {ι}.

To define the transition from tℓ to tℓ+1 through the letter w[ℓ], we use again
an intermediate level-labelling function t′ℓ+1 that we construct step by step as
follows. We start with t′ℓ+1(q) = [] for each q ∈ N and with the set of unused
numbers U = {u ≥ 1 | u /∈ β(tℓ) }, i.e., the numbers not used in β(tℓ).

1. For every state q′ ∈ δN (Sℓ∩N, w[ℓ]), let Pq′ = { q ∈ Sℓ∩N | (q, w[ℓ], q′) ∈ δN }
be the set of currently reached predecessors of q′, and Cq′ = ∅. For each
q ∈ Pq′ , if (q, w[ℓ], q′) ∈ F , then we add tℓ(q)⌢[u] to Cq′ , where u = minU ,
and we remove u from U , so that each number in U is used only once;
otherwise, for (q, w[ℓ], q′) ∈ δN \ F , we add tℓ(q) to Cq′ . Lastly, we set
t′ℓ+1(q′) = minCq′ , where the minimum is taken according to the list order.
Intuitively, if a run ρ can branch into two kinds of runs, some via accepting
transitions and some others via nonaccepting transitions at level ℓ+ 1, then
we let those from nonaccepting transitions inherit the labelling from ρ, i.e.,
tℓ(ρ[ℓ]); for the runs taking accepting transitions we create a new labelling
tℓ(ρ[ℓ])⌢[u]. In this way, the latter get precedence over the former. Moreover,
if a run ρ has received multiple labelling values, collected in Cρ[ℓ+1], then it
will keep the smallest one, by t′ℓ+1(ρ[ℓ + 1]) = minCρ[ℓ+1].

2. For each state q′ ∈ (Sℓ+1 ∩ N) \ δN (Sℓ ∩ N, w[ℓ]) taken according to the
state order ≼, we first set t′ℓ+1(q′) = [u], where u = minU , and then we
remove u from U , so we do not reuse the same values. That is, we give the
newly entered runs lower precedence than those already in N, by means of
the larger list [u].
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We now need to prune the lists in β(t′ℓ+1) and recognize good and bad events.
Similarly to DACs, a bad event means that a run has left N or has been merged
with runs with smaller labelling, which is indicated by a discontinuation of a
labelling between β(tℓ) and β(t′ℓ+1). For the transition e = (tℓ, w[ℓ], tℓ+1) we
are constructing, to recognize bad events, we put into the set B(e) the number
|N|+1 and all numbers in β(tℓ) that have disappeared in β(t′ℓ+1), that is, B(e) =
{|N| + 1} ∪ { v ∈ N | v occurs in β(tℓ) but not in β(t′ℓ+1) }.

Differently from the good events for DACs, which require to visit an accepting
transition, we need all runs branched from a run to visit an accepting transition,
which is indicated by the fact that there are no states labelled by t′ℓ+1 with
some list l ∈ β(tℓ) but there are extensions of l associated with some state. To
recognize good events, let G(e) = {|N| + 1} and t′′ℓ+1 be another intermediate
labelling function. For each q′ ∈ Sℓ+1 ∩ N, consider the list t′ℓ+1(q′): if for each
prefix [v1, · · · vk] of t′ℓ+1(q′) we have [v1, · · · vk] ∈ β(t′ℓ+1), then we set t′′ℓ+1(q′) =
t′ℓ+1(q′). Otherwise, let [v1, · · · vk̄] /∈ β(t′ℓ+1) be the shortest prefix of t′ℓ+1(q′) not
in β(t′ℓ+1); we set t′′ℓ+1(q′) = [v1, · · · vk̄] and add vk̄ to G(e). Setting t′′ℓ+1(q′) =
[v1, · · · vk̄] in fact corresponds, in the Safra’s construction [35], to the removal
of all children of a node N for which the union of the states in the children is
equal to the states in N. Lastly, similarly to the DAC case, we set tℓ+1(q) =
ord(t′′ℓ+1(q)) for each q ∈ Sℓ+1 ∩N and tℓ+1(q′) = [] for each q′ ∈ N \Sℓ+1, where
ord([v1, · · · , vk]) = [ord(v1), · · · , ord(vk)]. Regarding the color to assign to the
transition e, we just assign the color c = min{2 · minG(e), 2 · minB(e) − 1}.

Lemma 3. (1) An accepting run of A over w eventually stays in the NAC N
if and only if the minimal color c we receive infinitely often is even. (2) The
number of possible labelling functions t is at most 2 · (|N|!)2.

Similarly to DACs, also for NACs we have handled each NAC independently.
The reason for this is that this potentially reduces the complexity of the sin-
gle cases: assume that we have two NACs N1 and N2. If we apply the Safra-
Piterman’s construction directly to N1 ∪ N2, we might incur in the worst-case
complexity 2 · ((|N1| + |N2|)!)2, as mentioned in the introduction. However, if
we determinize them separately, then the worst complexity for each NAC Ni is
2 · (Ni!)

2, for an overall 4 · (|N1|! · |N2|!)2, much smaller than 2 · ((|N1|+ |N2|)!)2.
As usual, we make the above construction available as a function nondetSucc,

which takes as input the NAC N, a labelling t and a letter a, and returns the
successor labelling t′ and the corresponding color c ∈ {1, · · · , 2 · |N| + 1}.

0

`

1

2

q0, [1]

q0, [1, 2] q1, [1]

q0, [1] q1, [1]

Similarly to the constructions for other SCCs, we show
on the right the fragment of run DAG GA,aω for the NAC
N = {q0, q1}, with q0 ≼ q1. The construction of t1 is easy,
so consider its a-successor t2: we start with U = {3, 4, · · · };
for q0, we have Pq0 = {q0, q1} and Cq0 = {[1, 2, 3], [1]},
hence t′2(q0) = [1, 2, 3]. For q1, we get Pq1 = {q0} and
Cq1 = {[1, 2]}, so t′2(q1) = [1, 2]. Thus, for e = (t1, w[1], t2),
we have B(e) = {3} while G(e) = {1, 3}, since both lists in β(t′2) = {[1, 2], [1, 2, 3]}
are missing the prefix [1], so we get t2(q0) = t2(q1) = [1] and color c = 2.
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4 Determinization of NBAs to DELAs

In this section, we fix an NBA A = (Q, ι, δ, F ) with n = |Q| states and we
show how to construct an equivalent DELA AE = (QE, ιE, δE, Γ E, pE,AccE), by
using the algorithms developed in the previous section. We assume that A has
{D1, · · · ,Dd} as set of DACs and {N1, · · · ,Nk} as set of NACs.

When computing the successor for each type of SCCs while reading a word
w, we just need to know the set Sℓ of states reached at the current level ℓ and the
letter a ∈ Σ to read. We can ignore the actual level ℓ, since if Sℓ = Sℓ′ , then their
successors under the same letter will be the same. As mentioned before, every
state of AE corresponds to a level of GA,w. We call a state of AE a macrostate
and a run of AE a macrorun, to distinguish them from those of A.

Macrostates QE. Each macrostate consists of the pair (P,O) for encoding the
states in IWCs, a labelling function gi : Di → {1, · · · , |Di|} ∪ {∞} for the states
of each DAC Di and a labelling function tj : Nj → LNj for each NAC Nj , without
the explicit level number. The initial macrostate ιE of AE is the encoding of level
0, defined as the set {(P0, O0)} ∪ { gi0 | Di is a DAC } ∪ { tj0 | Nj is a NAC },
where each encoding for the different types of SCCs is the one for level 0.

We note that ι must be present in one type of SCCs. In particular, if ι is a
transient state, then {ι} is classified as an IWC.

Transition function δE. Let m be the current macrostate in QE and a ∈ Σ be
the letter to read. Then we define m′ = δE(m, a) as follows.

(i) For (Pm, Om) ∈ m, we set (Pm′ , Om′) = weakSucc((Pm, Om), a) in m′.
(ii) For gim ∈ m relative to the DAC Di, we set gim′ = detSucc(Di, gim, a) in m′.

(iii) For tjm ∈ m from the NAC Nj , we set tjm′ = nondetSucc(Nj , tjm, a) in m′.

Note that the set S of the current states of A used by the different successor
functions is implicitly given by the sets P , { q ∈ Di | gi(q) ̸= ∞} for each DAC
Di and { q ∈ Nj | tj(q) ̸= [] } for each NAC Nj in the current macrostate m.

Color set Γ E and coloring function pE. From the constructions given in
Section 3, we have two colors from the IWCs, 2 · |Di| + 1 colors for each DAC
Di, and 2 · |Nj | + 1 colors for each NAC Nj , yielding a total of at most 3 · |Q|
colors. Thus we set Γ E = {0, 1, · · · , 3 · |Q|} with color 0 not being actually used.

Regarding the color to assign to each transition, we need to ensure that the
colors returned by the single SCCs are treated separately, so we transpose them.
For a transition e = (m, a,m′) ∈ δE, we define the coloring function pE as follows.

– If we receive color 1 for the transition ((Pm, Om), a, (Pm′ , Om′)), then we put
1 ∈ pE(e). Intuitively, every time we see an empty O-set along reading an
ω-word w in the IWCs, we put the color 1 on the transition (m, a,m′).

– For each DAC Di, we transpose its colors after the colors for the IWCs and
the other DACs with smaller index. So we set the base number for the colors
of the DAC Di to be bi = 2 +

∑
1≤h<i(2 · |Dh| + 1), i.e., the number of

colors already being used. Then, if we receive the color c for the transition
(gim, a, gim′) from detSucc, we put c + bi ∈ pE(e).
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– We follow the same approach for the NAC Nj : we set its base number to be
bj = 2 +

∑
1≤h≤d(2 · |Dh|+ 1) +

∑
1≤h<j(2 · |Nh|+ 1). Then, if we receive the

color c for the transition (tjm, a, tjm′) from nondetSucc, we put c+ bj ∈ pE(e).

Intuitively, we make the colors returned for each SCC not overlap with those
of other SCCs without changing their relative order. In this way, we can still
independently check whether there exists an accepting run staying in an SCC.

Acceptance formula AccE. We now define the acceptance AccE, which is basi-
cally the disjunction of the acceptance formula for each different types of SCCs,
after transposing them. Regarding the IWCs, we trivially define AccEW = Fin(1),
since this is the acceptance formula for IWCs; as said before, color 0 is not used.

For DACs and NACs, the definition is more involved. For instance, regarding
the DAC Di, we know that all returned colors are inside {1, · · · , 2 · |Di| + 1}.
According to Lemma 2, an accepting run eventually stays in Di if and only if
the minimum color that we receive infinitely often is even. Thus, the acceptance

formula for the above lemma is parity(|Di|) =
∨|Di|

c=1(
∧c

j=1 Fin(2j − 1) ∧ Inf(2c)).

Let bi = 2 +
∑

h<i(2 · |Dh|+ 1) be the base number for the colors of Di, which is

also the number of colors already used by IWCs and the DACs Dh with h < i.
Since we have added the base number bi to every color of Di, we then have the

acceptance formula AccEDi =
∨|Di|

c=1(
∧c

j=1 Fin(2j − 1 + bi) ∧ Inf(2c + bi)).

For each NAC Nj , the colors we receive are in {1, · · · , 2 · |Nj | + 1}. Let
bj = 2 +

∑
1≤h≤d(2 · |Dh| + 1) +

∑
h<j(2 · |Nj | + 1) be the base number for Nj .

Similarly to the DAC case, for each NAC Nj , we let AccENj =
∨|Nj |

c=1(
∧c

i=1 Fin(2i−
1 + bj) ∧ Inf(2c + bj)).

The acceptance formula for AE is AccE = AccEW ∨∨d
i=1 Acc

E
Di ∨

∨k
j=1 Acc

E
Nj .

Consider again the NBA A given in Figure 1 and its various SCCs. As ac-
ceptance formula for the constructed DELA, it is the disjunction of the formulas
AccEW = Fin(1); AccED =

∨2
c=1(

∧c
j=1 Fin(2j − 1 + 2) ∧ Inf(2c + 2)), since the base

number for D is 2; and AccEN =
∨2

c=1(
∧c

i=1 Fin(2i− 1 + 7) ∧ Inf(2c + 7)), since 7
is the base number for N.

The construction given in this section is correct, as stated by Theorem 1.

Theorem 1. Given an NBA A with n = |Q| states, let AE be the DELA
constructed by our method. Then (1) L(AE) = L(A) and (2) AE has at most

3|W| ·
(∏d

i=1 3 · |Di|!
)
·
(∏k

j=1 2 · (|Ni|!)2
)
macrostates and 3n + 1 colors.

Obviously, if d = k = 0, A is a weak BA [31]. If k = 0, A is an elevator BA, a
new class of BAs recently introduced in [19] which have only IWCs and DACs,
a strict superset of semi-deterministic BAs (SDBAs) [10]. SDBAs will behave
deterministically after seeing acceptance transitions. An elevator BA that is not
an SDBA can be obtained from the NBA A shown in Figure 1 by setting q2 as
initial state and by removing all states and transitions relative to the NAC.

It is known that the lower bound for determinizing SDBAs is n! [14, 26].
Then the determinization complexity of weak BAs and elevator BAs can be
easily improved exponentially as follows.

14



Corollary 1. (1) Given a weak Büchi automaton A with n = |Q| states, the
DELA constructed by our algorithm has at most 3n macrostates. (2) Given an
elevator Büchi automaton A with n = |Q| states, our algorithm constructs a
DELA with Θ(n!) macrostates; it is asymptotically optimal.

The upper bound for determinizing weak BAs is already known [5]. Elevator
BAs are, to the best of our knowledge, the largest subclass of NBAs known so
far to have determinization complexity Θ(n!).

The acceptance formula for an SCC can be seen as a parity acceptance for-
mula with colors being shifted to different ranges. A parity automaton can be
converted into a Rabin one without blow-up of states and transitions [16]. Since
AccE is a disjunction of parity acceptance formulas, Theorem 2 then follows.

Theorem 2. Let AE be the constructed DELA for the given NBA A. Then AE

can be converted into a DRA AR without blow-up of states and transitions.

Translation to deterministic Parity automata (DPAs). We note that
there is an optimal translation from a DRA to a DPA described in [7], imple-
mented in Spot via the function acd transform [8].

5 Empirical Evaluation

To analyze the effectiveness of our Divide-and-Conquer determinization con-
struction proposed in Section 3, we implemented it in our tool COLA, which
is built on top of Spot [12]. The source code of COLA is publicly available
from https://github.com/liyong31/COLA We compared COLA with the of-
ficial versions of Spot [12] (2.10.2) and Owl [23] (21.0). Spot implements the
algorithm described in [34], a variant of [32] for transition-based NBAs, while
Owl implements the algorithms described in [27,28], both constructing DPAs as
result. To make the comparison fair, we let all tools generate DPAs, so we used
the command autfilt --deterministic --parity=min\ even -F file.hoa

to call Spot and owl nbadet -i file.hoa to call Owl. Recall that we use
the function acd transform [8] from Spot for obtaining DPAs from our DRAs.
The tools above also implement optimizations for reducing the size of the output
DPA, like simulation and state merging [28], or stutter invariance [22] (except for
Owl); we use the default settings for all tools. We performed our experiments
on a desktop machine equipped with 16GB of RAM and a 3.6 GHz Intel Core
i7-4790 CPU. We used BenchExec5 [3] to trace and constrain the tools’ execu-
tions: we allowed each execution to use a single core and 12 GB of memory, and
imposed a timeout of 10 minutes. We used Spot to verify the results generated
by three tools and found only outputs equivalent to the inputs.

As benchmarks, we considered all NBAs in the HOA format [1] available
in the automata-benchmarks repository6. We have pre-filtered them with
autfilt to exclude all deterministic cases and to have nondeterministic BAs,
obtaining in total 15,913 automata coming from different sources in literature.

5 https://github.com/sosy-lab/benchexec/
6 https://github.com/ondrik/automata-benchmarks/
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Fig. 2. The cactus plot for the determinization of NBAs from automata-benchmarks.
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Fig. 3. States comparison for the determinization of NBAs from automata-
benchmarks.

In Figure 2 we show a cactus plot reporting how many input automata have
been determinized by each tool, over time. As we can see, COLA works better
than Spot, with COLA solving in total 15, 903 cases and Spot 15, 862 cases,
with Owl solving in total 15, 749 cases and taking more time to solve as many
instances as COLA and Spot. From the plot given in Figure 2 we see that
COLA is already very competitive with respect to its performance.

In Figure 3 we show the number of states of the generated DPAs. In the
plot we indicate with the bold dashed line the maximum number of states of the
automata produced by either of the two tools, and we place a mark on the upper
or right border of the plot to indicate that one tool has generated an automaton
with that size while the other tool just failed. The color of each mark represents
how many instances have been mapped to the corresponding point. As the plots
show, Spot and COLA generate automata with similar size, with COLA being
more likely to generate smaller automata, in particular for larger outputs. Owl,
instead, very frequently generates automata larger than COLA. In fact, on the
15,710 cases solved by all tools, on average COLA generated 44 states, Spot
65, and Owl 87. If we compare COLA with just one tool at a time, on the
15,854 cases solved by both COLA and Spot, we have 125 states for COLA
and 246 for Spot; on the 15,749 cases solved by both COLA and Owl, we have
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Fig. 4. Acceptance sets comparison for the determinization of NBAs from automata-
benchmarks.

Table 1. Pearson correlation coefficients for the automata-benchmarks experiments.

# input states # input SCCs average SCC size

runtime 0.77 0.62 -0.01
output states 0.41 0.17 0.05

45 states for COLA and 88 for Owl. A similar situation occurs for the number
of transitions, so we omit it.

Lastly, in Figure 4 we compare the number of acceptance sets (i.e., the colors
in Definition 1) of the generated DPAs; more precisely, we consider the integer
value occurring in the mandatory Acceptance: INT acceptance-cond header
item of the HOA format [1], which can be 0 for the automata with all or none
accepting transitions. From the plots we can see that COLA generates more
frequently DPAs with a number of colors that is no more than the number
used by Spot, as indicated by the yellow/red marks on (10,394 cases) or above
(5,495 cases) the diagonal. Only in very few cases COLA generates DPAs with
more colors than Spot (22 cases), as indicated by the few blue/greenish marks
below the diagonal. Regarding Owl, however, from the plot we can clearly see
that COLA uses almost always (15,840 cases) fewer colors than Owl; the only
exception is for the mark at (0, 0) representing 63 cases.

The number and sizes of SCCs influence the performance of COLA, so we
provide some statistics about the correlation between these and the runtime and
size of the generated DPA. By combining the execution statistics with the input
SCCs and states, we get the Pearson correlation coefficients shown in Table 1.
Here the larger the number in a cell is, the stronger the positive correlation be-
tween the element that the row and the column represent. From these coefficients
we can say that there is a quite strong positive correlation between the number
of states and of SCCs and the running time, but not for the average SCC size;
regarding the output states, the situation is similar but much weaker.

We also considered a second set of benchmarks – 644 NBAs generated by
Spot’s ltl2tgba on the LTL formulas considered in [23], as available in the
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Owl’s repository at https://gitlab.lrz.de/i7/owl. The outcomes for these
benchmarks are similar, but a bit better for COLA, to the ones for automata-
benchmarks, so we do not present them in detail. In Appendix B we provide
additional plots for the automata-benchmarks benchmarks as well as the ones
for these 644 NBAs.

6 Related Work

To the best of our knowledge, our determinization construction is the first algo-
rithm that determinizes SCCs independently while taking advantage of different
structures of SCCs, which is the main difference between our algorithm and
existing works. We illustrate other minor differences below.

Different types of SCCs, like DACs and IWCs, are also taken with special
care in [28] as in our work, modulo the handling details. However, the work [28]
does not treat them independently as the labelling numbers in those SCCs still
have relative order with those in other SCCs. Thus their algorithm can be ex-
ponentially worse than ours (cf. Theorem 3) and performs not as well as ours in
practice; see the comparison with Owl in Section 5. The determinization algo-
rithm given in [14] for SDBAs is a special case of the one presented in [34] for
NBAs, which gives precedence to the deterministic runs seeing accepting tran-
sitions earlier, while we give precedence to runs that enter DACs earlier. More
importantly, the algorithm from [14] does not work when there is nondetermin-
ism between DACs, while our algorithm overcomes this by considering DACs
separately and by ignoring runs going to other SCCs.

Current works for determinization of general NBAs, such as [18, 21, 27, 34,
35, 37] can all be interpreted as different flavours of the Safra-Piterman based
algorithm. Our determinization of NACs is also based on Safra-trees, except
that we may have newly arriving states from other SCCs while other works
only need to consider the successors from the current states in the Safra-tree.
The modular approach for determinizing Büchi automata given in [17] builds on
reduced split trees [21] and can construct the deterministic automaton with a
given tree-width. The algorithm constructs the final deterministic automaton by
running in parallel the NBA for all possible tree-widths, rather than working on
SCCs independently as we do in this work.

Compared to the algorithms operating on the whole NBA, our algorithm can
be exponentially better on the family of NBAs shown in Figure 5, as formalized
in Theorem 3; we can encounter some variation of this family of NBAs when
working with fairness properties. The intuition is that we take care of the DACs
{qi}ni=1 independently, so for each of them we have only two choices: either the
run is in the DAC, or it is not in the DAC; resulting in a single exponential
number of combinations. Existing works [14, 21, 27, 32, 34, 35] order the runs
entering the DACs based on when they visit accepting transitions, in which
every order corresponds to a permutation of {q1, · · · , qn}. See Appendix A.7 for
a detailed proof.
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Theorem 3. There exists a family of NBAs An with n+ 2 states for which the
algorithms in [14,21,27,32,34,35] give a DPA with at least n! macrostates while
ours gives a DELA with at most 2n+2 macrostates.

In practice, for each NBA An, n ≥ 3, COLA produces a DELA/DPA with
n macrostates, while both Spot and Owl give a DPA with n! + 1 macrostates.

7 Conclusion and Future Work

We proposed a divide-and-conquer determinization construction for NBAs that
takes advantage of the structure of different types of SCCs and determinizes them
independently. In particular, our construction can be exponentially better than
classical works on a family of NBAs. Experiments showed that our algorithm
outperforms the state-of-the-art implementations regarding the number of states
and transitions on a large set of benchmarks. To summarize, our divide-and-
conquer determinization construction is very practical, being a good complement
to existing theoretical approaches.

Our divide-and-conquer approach for NBAs can also be applied to the com-
plementation problems of NBAs. By Proposition 1, w is not accepted by A if and
only if there are no accepting runs staying in an SCC. Thus we can construct a
generalized Büchi automaton with a conjunction of Inf(i) as the acceptance for-
mula to accept the complement language Σω \ L(A) of A; the generalized Büchi
automaton in fact takes the intersection of the complement language of each
type of SCCs. For complementing IWCs, we use the same construction as deter-
minization except that the acceptance formula will be Inf(1). For complementing
DACs, we can borrow the idea of NCSB complementation construction [4] which
complements SDBAs in time 4n. For complementing NACs, we just adapt the
slice-based complementation [21] of general NBAs. We leave the details of this
divide-and-conquer complementation construction for NBAs as future work.

Acknowledgements. We thank the anonymous reviewers for their valuable
suggestions to this paper. This work is supported in part by the National Nat-
ural Science Foundation of China (Grant No. 62102407 and 61836005), NSF

19



grants IIS-1527668, CCF-1704883, IIS-1830549, CNS-2016656, DoD MURI grant
N00014-20-1-2787, and an award from the Maryland Procurement Office.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sk lodowska-Curie grant
agreement No 101008233.

References

1. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křet́ınský, J., Müller, D.,
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15. Esparza, J., Křet́ınský, J., Sickert, S.: A unified translation of linear temporal logic
to ω-automata. J. ACM 67(6) (oct 2020)

16. Farwer, B.: omega-automata. In: Automata, Logics, and Infinite Games: A Guide
to Current Research. LNCS, vol. 2500, pp. 3–20 (2001)

17. Fisman, D., Lustig, Y.: A modular approach for Büchi determinization. In: CON-
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23. Kret́ınský, J., Meggendorfer, T., Sickert, S.: Owl: A library for ω-words, automata,
and LTL. In: ATVA. LNCS, vol. 11138, pp. 543–550 (2018)

24. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3), 408–429 (2001)

25. Liu, W., Wang, J.: A tighter analysis of Piterman’s Büchi determinization. Inf.
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A Formal Proofs of the Theorems

A.1 Proof of Lemma 1

Lemma 1. (1) There exists an accepting run of A over w eventually staying in
an accepting IWC if and only if we receive color 1 finitely many times when con-
structing the sequence (P0, O0) · · · (Pℓ, Oℓ) · · · while reading w. (2) The number
of possible (P,O) pairs is at most 3|W|.

Statement (1): correctness. Assume that there is a run ρ that enters into an
accepting IWC C ⊆ WA at level k and then stays there forever. By definition,
we have that ρ[ℓ] ∈ Sℓ as well as ρ[ℓ] ∈ WA ⊆ W for all ℓ ≥ k, thus also ρ[ℓ] ∈ Pℓ;
recall that color 1 is emitted solely when O is empty. If in the (P,O)-sequence,
O never becomes empty after level k, then we never get color 1 anymore, so the
claim follows trivially since we have got color 1 at most k times. Suppose now
that O becomes empty at some level h > k; this implies that ρ[h + 1] ∈ Oh+1,
since by definition we have Oh+1 = δ(Ph, w[h])∩WA and ρ[h+ 1] ∈ Ph+1 as well
as ρ[h + 1] ∈ WA. Since we have ρ[j] ∈ WA for all j ≥ h + 1 by the hypothesis
that ρ enters into an accepting IWC C ⊆ WA at level k and then stays there
forever, we have that Oj can never become empty anymore. As before, we never
get color 1 anymore, so the claim follows since we have got color 1 at most h
times.

On the other hand, if we receive color 1 finitely many times, then by definition
there are only finitely many empty O-sets. There must be k ∈ N such that Oj ̸= ∅
for all j ≥ k. Therefore, according to König’s lemma, there must be a run ρ of
A over w such that ρ[j] ∈ Oj for all j ≥ k (the states ρ[i] with i < k are not
necessarily WA-states). According to Proposition 1, ρ will end up in an SCC,
which must be an accepting IWC since Oj ⊆ WA for all j ≥ k. By definition, it
follows that ρ takes accepting transitions infinitely often, thus ρ is accepting.

Statement (2): complexity. Regarding the number of pairs (P,O), note that
O ⊆ P ⊆ W. Thus for each q ∈ W, either q ∈ O ⊆ P , or q ∈ P but q /∈ O, or
q /∈ P ⊇ O. Therefore, the number of possible (P,O) pairs is at most 3|W|.

A.2 Proof of Lemma 2

Lemma 2. (1) An accepting run of A over w eventually stays in the DAC D
if and only if the minimal color c we receive infinitely often is even. (2) The
number of possible labelling functions g is at most 3 · |D|!.

Statement (1): correctness. Assume that there is an accepting run ρ of A
over w that enters and never leaves the DAC D: this means that there is ℓ ∈ N
such that ρ[j] ∈ Sj∩D for all j ≥ ℓ. By definition, for all such j ≥ ℓ the sequence
of values gj(ρ[j]) never becomes ∞ and never increases. This implies that such
sequence eventually stabilizes, thus from some point h > ℓ, we have gj(ρ[j]) = k
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for all j ≥ h; moreover, we also have {1, · · · , k} ⊆ β(gj). This implies that
minB(gj , w[j], gj+1) = p > k after level h while G(gj , w[j], gj+1) can be empty
(resulting in the color c = min{2 ·(|D|+1), 2p−1} > 2k) or non-empty (resulting
in the color c = 2 · minG(gj , w[j], gj+1) ≤ 2k < 2 · |D|), depending on whether
accepting transitions are taken. Since the run ρ is accepting, we know that
accepting transitions are taken infinitely often, so the minimum color occurring
infinitely often is some even number at most 2k.

Assume that the minimum color occurring infinitely often is even; let us call
it 2k with k ≥ 1. Let h > 0 be the level after which the minimum color we
receive infinitely often is 2k. It is easy to see that after level h, the run ρ with
the labelling number k stays in D and is accepting by definition. Since ρ[h] is a
state reachable from the initial state ι, we then have an accepting run of A over
w that stays in D.

Statement (2): complexity. Let nd = |D|. Every possible labelling function
can be seen as first choosing 0 ≤ k ≤ nd states and getting a permutation from
those states. So the number of possible labeling functions is

nd∑
k=0

(
nd

k

)
· k! =

nd∑
k=0

nd!

(nd − k)! · k!
· k!

=

nd∑
k=0

nd!
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≤ nd! ·
(

1

0!
+

1

1
+

1

1 × 2
+

1
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− 1
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− 1
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+ · · · +

( 1

nd − 1
− 1
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(

1 + 1 +
1

1
− 1
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1
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− 1

3
+ · · · +

1
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3 − 1
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≤ 3 · nd!.

Thus the number of possible labelling functions g is at most 3 · |D|!.

A.3 Proof of Lemma 3

Lemma 3. (1) An accepting run of A over w eventually stays in the NAC N
if and only if the minimal color c we receive infinitely often is even. (2) The
number of possible labelling functions t is at most 2 · (|N|!)2.
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Statement (1): correctness. Assume that there exists an accepting run ρ of
A over w eventually staying in N. Assume that at level ℓ0, ρ enters N and is
assigned with labelling [p]. We then have the sequence of labellings of ρ inside
N as tℓ0(ρ[ℓ0])tℓ0+1(ρ[ℓ0 + 1]) · · · .

Every time ρ visits an accepting transition, the labelling list associated with
the ρ-state will be appended with an additional integer larger than the ones
already in the labelling list. By construction, the first integer in tℓ(ρ[ℓ]) with
ℓ ≥ ℓ0 cannot increase while reading w, i.e., when ℓ increases. Since ρ stays in N
forever, the first integer in each labelling list of ρ must stabilize at some level.
The second integer in each labelling list of ρ may also become stable at some
point, depending on whether it will be removed due to the occurrence of good
events. In general, there must exist a maximum integer k and a level ℓ1 > ℓ0
such that k occurs in t′′ℓ (ρ[ℓ]) and tℓ(ρ[ℓ]) for all ℓ > ℓ1 and all integers k′ ≤ k
after level ℓ1 will not disappear; if one of such k′ would disappear, k will be
mapped to a smaller integer via the function ord.

Thus, every time we are at a level ℓ > ℓ1 where the maximum number in
tℓ(ρ[ℓ]) is larger than k but the maximum integer in tℓ+1(ρ[ℓ + 1]) is k, we also
need to have seen a good event; thus we will put the integer k into G(e), where
e is the transition e = (tℓ(ρ[ℓ]), w[ℓ], tℓ+1(ρ[ℓ + 1])).

Let k′ be the maximum number occurring in the list tℓ(ρ[ℓ]); we have states
associated with k′ since ρ always continues. Thus, by definition, we must have
seen a good event represented by the integer k. We then will receive an even color
at most 2k. Moreover, it is not possible to put an integer less than k in B(e),
since there are states associated with them, otherwise k would be renumbered
against the assumption that k is stable. Thus we have proved that the minimum
color we receive infinitely often is even and it must be at most 2k.

As for the other direction, we assume that the minimum color we receive
infinitely often is even, say 2k. Assume that the sequence of labelling functions
over w is t0 · · · tℓ · · · . There are infinitely many transitions between two successive
labelling functions where we receive the color 2k. Thus, by construction, this
happens because there must be infinitely many labelling function ti such that
(ti−1, w[i − 1], ti) is associated with the color 2k. Since the number of possible
labelling functions is finite, there must be a labelling function, say t, such that
(ti−1, w[i − 1], t = ti) is assigned the color 2k. That is, the labelling function
t has been visited for infinitely many times. It follows that all the states in N
associated with the color k in t have been reached for infinitely many times and
all runs branched from those states have all visited accepting transitions, since
by definition we set all branched runs back to the labelling list whose last integer
is k. According to the König’s lemma, there must be a run that visits accepting
transitions infinitely often starting from the states in N. Since every state in N
is reachable from the initial state ι, there must be an accepting run staying in
the NAC N.

Statement (2): complexity. For a given NAC N, we can map a labelling
function tℓ at level ℓ to a Safra-tree like structure in which each node is labelled
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with a set of A-states. The root node is constantly labelled with the set N. The
tree has at most |N| nodes with the root node being 0. For a state q ∈ Sℓ ∩ N,
tℓ(q) is in fact a list of node numbers where the state q resides in. We say that
the maximal number of the labelling tℓ(q) is the host node of q. We denote by
node(q) the host node of q. By definition, the integers in a labelling are already
in ascending order. Therefore, we have the following properties:

– if tℓ(q) is a prefix of tℓ(q
′), then node(q) is an ancestor node of node(q′).

Moreover, we have node(q) < node(q′). In particular, if tℓ(q) has one less
integer than tℓ(q

′), then node(q) is the parent of node(q′);
– the states labelled in a parent node n must form a superset of all states in

its children, just like that in history trees [37]; and
– the states in two different child nodes of a node are disjoint. This is immediate

by construction.

Also, the node number of a parent node must be smaller than that of its every
child [32, 37] according to the order of entering N. (This is called later intro-
duction record in literature.) The labelling of the tree with the states can be
seen as a function from N to {1, · · · ,m}, where m is the number of nodes, that
maps a state q ∈ N to the largest node number it resides in and to 0 if the
state is not reached in the current level, thus it is in the root node. According
to [37] (in the second paragraph of page 179), the number of different trees is
2 · (|N| − 1)! · |N|! ≤ 2 · (|N|!)2.

A.4 Proof of Theorem 1

Theorem 1. Given an NBA A with n = |Q| states, let AE be the DELA
constructed by our method. Then (1) L(AE) = L(A) and (2) AE has at most

3|W| ·
(∏d

i=1 3 · |Di|!
)
·
(∏k

j=1 2 · (|Ni|!)2
)
macrostates and 3n + 1 colors.

Statement (1): correctness. Each word w accepted by A, by Proposition 1,
eventually gets trapped in an accepting SCC, i.e., either by the IWCs, or a DAC
or a NAC; thus the corresponding results given in Lemmas 1, 2, and 3 apply,
respectively. Since AE accepts the union of the words accepted by each single
construction, we have that w is also accepted by AE, that is, L(A) ⊆ L(AE).

On the other hand, if a word w is accepted by AE, then it must be accepted by
one of its components, i.e., either the one for IWCs, for DACs or for NACs; thus
the corresponding results given in Lemmas 1, 2, and 3 apply, respectively. In all
cases, we derive that w is accepted by A, that is, L(AE) ⊆ L(A). By combining
the obtained language inclusions, we derive L(AE) = L(A) as required.

Statement (2): complexity The size of AE follows directly by taking the
product of the number of pairs or labelling functions given by Lemmas 1, 2,
and 3; the number of colors is just by definition.
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A.5 Proof of Corollary 1

Corollary 1. (1) Given a weak Büchi automaton A with n = |Q| states, the
DELA constructed by our algorithm has at most 3n macrostates. (2) Given an
elevator Büchi automaton A with n = |Q| states, our algorithm constructs a
DELA with Θ(n!) macrostates; it is asymptotically optimal.

Statement (1): weak BAs. The 3n macrostates for the weak BAs case is a
trivial consequence of Theorem 1: since a weak BA has no DACs or NACs, only
IWCs, we have W = Q and d = k = 0 that give 3n when instantiating the
formula for the number of macrostates in Theorem 1.

Statement (2): elevator BAs. We now prove that determinizing elevator BAs
can be done in Θ(n!); it is in fact a direct result of Theorem 1. It is trivial to
see that the constructed DELA has the same language as the input, according
to Theorem 1, so we just need to prove that the determinization complexity is
in Θ(n!).

Recall that elevator BAs have only IWCs and DACs as SCCs, thus k = 0. Let
nw = |W| and ni = |Di| for each of the d DACs Di. In this case, the worst-case
complexity of our algorithm is only

3nw ·
d∏

i=1

3 · ni! = 3nw+d · (n1 + · · · + nd)! · 1(
n1+···+nd

n1

) · 1(
n2+···+nd

n2

) · · · · · 1(
nd

nd

)
≤ 3n · n! ·

d∏
i=1

1

ni
∈ O(n!),

where n = nw +
∑d

i=1 ni. It is already known [14, 26] that the lower bound
for determinizing semi-deterministic Büchi automata (SDBAs), a strict subset
of elevator NBAs, is n!. Thus our determinization algorithm for elevator Büchi
automata is already asymptotically optimal since the lower bound and the upper
bound coincide as Θ(n!).

A.6 Proof of Theorem 2

Theorem 2. Let AE be the constructed DELA for the given NBA A. Then AE

can be converted into a DRA AR without blow-up of states and transitions.

The different algorithms presented in Section 3, that form the basis for the
construction of AE in Section 4, generate a parity condition for the acceptance
inside the various SCCs.

It is known that a DPA AP can be trivially transformed into a Rabin automa-
ton AR by changing only the accepting formula Acc and the coloring function p,
that is, states and transitions remain the same (cf. [16, Transformation 1.18]);

26



we adopt a similar approach for our case, just we have to consider the trans-
pose operation we applied to the colors and the fact that the global acceptance
condition AccE is the disjunction of the parity conditions of the various SCCs.

By definition, a word w is accepted by a parity automaton with color set
Γk if there is a run ρ over w such that min p(inf (ρ)) is even, that is, p is the
minimum even color occurring infinitely often and all other colors p′ < p occur
only finitely often. To define the Rabin acceptance formula, we just give all
transitions originally with color p the color p/2, and all transitions with smaller
value the color p/2 − 1; then the Rabin acceptance formula is Acc = (Fin(0) ∧
Inf(1)) ∨ · · · ∨ (Fin(k/2 − 1) ∧ Inf(k/2)) and the color set is Γk/2 (note that k is
an even number by definition).

From the definition of the acceptance formula AccE, we can see that it is a
disjunction of parity-like acceptance conditions. So it follows that we can also
translate AE to a DRA without blow-up of states and transitions.

A.7 Proof of Theorem 3

Theorem 3. There exists a family of NBAs An with n+ 2 states for which the
algorithms in [14,21,27,32,34,35] give a DPA with at least n! macrostates while
ours gives a DELA with at most 2n+2 macrostates.

Each NBA An = (Q, q0, δ, F ) in the family is like the one depicted in Figure 5.
Consider our construction: for the NBA An, there are n DACs Di = {qi},

for 1 ≤ i ≤ n. The SCCs {q0} and {q⊥} are both nonaccepting IWCs. So in our
algorithm, the DELA we construct has at most 22 × 2n = 2n+2 macrostates: 22

pairs (P,O) for the IWCs, since WA = ∅ thus the O-sets for the IWCs are always
empty; 2n choices for the DAC level encoding, since for each DAC Di = {qi}, we
have 2 choices: either no state or only qi is currently visited in Di. In this way
we can give a more precise bound than the general one provided by Theorem 1.

Consider now the constructions from literature: the deterministic part of An

is QD = {q1, · · · , qn, q⊥}; the algorithms described in [14, 21, 27, 32, 34, 35] give
precedence to the runs that see an accepting transition earlier and visit more
accepting transitions. That is, when reading the letter i ∈ {1, · · · , n}, the order
of the runs entering in QD is qi < q1 < · · · < qi−1 < qi+1 < · · · < qn if i ̸= 1 and
q1 < · · · < qn otherwise.

To prove that the DPA constructed by [14, 21, 27, 32, 34, 35] has at least n!
macrostates, we show how to ensure that the order of the states D = {q1, · · · , qn}
in a reachable macrostate is a permutation of the states in D; since there are n!
permutations, there need to be at least n! macrostates. To this end, we assume
that we are given a permutation π = qi1 < qi2 < qi3 < · · · < qin and we show
how to reach the corresponding macrostate from the initial state of the DPA via
a finite word uπ, by constructing such a word uπ from the above permutation
π. Note that we ignore the place where we have q⊥ and only focus on the order
of the D-states.

From the initial state of the DPA, which contains only the initial state q0 of
An, to put qi1 in the first place, we first read the letter i1, which leads to the
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macrostate with qi1 < q1 < · · · qi1−1 < qi1+1 < · · · < qn. Note that we see an
accepting transition from q0 to qi1 via i1, so the algorithm gives precedence to
the run that reaches qi1 and orders the other states according to the usual state
order ≼. To put qi2 in the second position, we can just read once each letter
from {1, · · · , n} \ {i1, i2} in ascending order. This makes all states in D, except
for qi1 and qi2 , transition to q⊥, leaving qi2 just after qi1 , obtaining the order
qi1 < qi2 < q1 < · · · < qn. Note that states will keep coming from the initial
state q0 and if the newly arrived states are already present, they will be ignored.
To put qi3 in the third position, similarly to the previous case we read all letters
from {1, · · · , n} \ {i1, i2, i3} in ascending order. By proceeding in the same way,
we obtain the order qi1 < qi2 < qi3 < · · · < qin , which is exactly the given
permutation π. Given the arbitrary choice of π, we have that all permutations
correspond to a different macrostate in the DPA constructed by the algorithms
given in [14,21,27,32,34,35], so the DPA has at least n! macrostates.

Consistent experiments. To check whether the behavior of the actual imple-
mentations of the algorithms given in [14,21,27,32,34,35] are consistent with the
bounds given by Theorem 3, we have performed some experiments on the family
of NBAs with COLA, Spot and Owl, finding that they behave consistently
with Theorem 3. In practice, for the given NBA An, with n ≥ 3, COLA gives a
DPA with n macrostates and Fin(0)∧Inf(1) as acceptance formula; Spot returns
a DPA with n! + 1 macrostates and the same acceptance formula Fin(0)∧ Inf(1);
and Owl produces a DPA with also n! + 1 macrostates while the acceptance
formula is Inf(0) ∨ (Fin(1) ∧ (Inf(2) ∨ Fin(3))); however it fails on A7 and larger
automata with a java.lang.StackOverflowError when it tries to optimize the
constructed automaton. On the other hand, COLA can go up for a very large n,
while Spot already timeouts on A11. We remark that the acceptance formulas
from COLA and Spot have been simplified by the algorithms implemented in
Spot.

B Additional Plots for the Experiments

In this appendix we provide additional plots for the experiments presented in
Section 5, which we omitted in the main part of the paper to keep it short.

B.1 Determinization of NBAs from automata-benchmarks

In Figure 6 we provide scatter plots showing the detailed comparison of COLA
with Spot and Owl with respect to the running time on the single cases. In the
plots, the solid line just before 103 indicates the timeout (set to 600 seconds);
the dashed line at 103 an out of memory result, and the border of the plot other
failures. As we can see from the plots, Owl is usually slower than COLA, except
for few cases requiring less than one second. Regarding Spot, it is frequently
faster than COLA, showing how well it performs. COLA, on the other hand, is
better than Spot in several cases, on which it is faster or even able to produce
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Fig. 6. Runtime comparison on the determinization of automata-benchmarks.
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Fig. 7. Transitions comparison on the determinization of automata-benchmarks; a
mark at 10−1 represents automata without transitions.

a DPA within 10 seconds while Spot goes timeout. By comparing these results
with the cactus plot in Figure 2, we can conclude that there is no clear winner
between Spot and COLA when we consider just the running time of the tools.

In Figure 7 we complete the comparison of COLA with Spot and Owl by
considering the number of transitions in the DPAs generated from the NBAs
available in automata-benchmarks. Since we use logarithmic axes and au-
tomata can have zero transitions (this happens for the automata accepting the
empty language, since the HOA format allows the tools to specify automata that
are not complete), in the plots we place a mark at 10−1 to represent the fact that
the corresponding tool has returned an automaton with no transitions at all. As
already mentioned in the main part of the paper, the plots are very similar to
the ones about the states shown in Figure 3. Regarding the average number
of transitions generated by the tools, on the 15,710 commonly solved cases, we
have 167 transitions on average by COLA, 266 by Spot, and 292 by Owl. By
splitting the comparison, on the 15,854 cases solved by both COLA and Spot,
we have on average 900 transitions from COLA and 2,174 from Spot; on the
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Fig. 8. The cactus plot for the determinization of NBAs from LTL formulas.
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Fig. 9. Runtime comparison on the determinization of NBAs from LTL formulas.

15,749 common cases for COLA and Owl, we have 173 transitions from COLA
and 302 from Owl.

B.2 Determinization of NBAs from LTL Formulas

We now present the plots about the detailed comparison of the different tools
on the NBAs generated from the LTL formulas considered in [23], as available in
the Owl’s repository. As said in the main part of the paper, we used the Spot’s
ltl2tgba command to convert them to NBAs: out of 645 formulas, ltl2tgba
failed to provide the NBA for just one formula.

The cactus plot shown in Figure 8 is the counterpart of the one about
automata-benchmarks shown in Figure 2. We can see that the two plots
show the same trend: COLA slightly above Spot, with Owl quite below them.
If we look at the actual numbers, we have that both COLA and Spot are able
to determinize 643 cases, while Owl only 628, with a common failure for all
tools.

The plots in Figure 9 are relative to the running time of the different tools.
By comparing them with the corresponding plots in Figure 6, we can see that
they are rather similar. For the NBAs in this set of benchmarks, however, we
can note that COLA is usually faster than Spot, in particular for the inputs
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Fig. 10. States comparison on the determinization of NBAs from LTL formulas.
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Fig. 11. Transitions comparison on the determinization of NBAs from LTL formulas.

requiring more than 0.1 seconds to be determinized, as already hinted by the
cactus plot shown in Figure 8.

The scatter plots in Figure 10 and Figure 11 are relative to the number of
states and transitions, respectively, of the generated DPAs. Similarly to the plots
about the running time, we again have that COLA and Spot produce automata
of similar size, with COLA more frequently generating smaller automata than
Spot in this benchmark than in automata-benchmarks (cf. Figure 3 and
Figure 7, respectively). By looking at the actual number of states, we have that
on the 628 commonly solved cases, on average the DPA generated by COLA
has 9 states, by Spot 11, and by Owl 45. If we just compare COLA and Spot
on all 643 solved cases, we have that COLA generates 22 states while Spot 49,
on average. This situation is similar also for the average number of transitions:
for the 628 cases solved by all tools, we have 72 for COLA, 108 for Spot, and
609 for Owl; for the 643 cases solved by COLA and Spot, we have 275 and
1547 transitions on average, respectively.

Lastly, the plots in Figure 12 are relative to the number of colors in the
generated DPAs. Differently from the automata-benchmarks plots shown in
Figure 4, on the NBAs from LTL formulas COLA always produces a DPA with
at most the number of acceptance sets/colors of the corresponding one produced
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Fig. 12. Acceptance sets comparison on the determinization of NBAs from LTL for-
mulas.

by Spot; more precisely, COLA generates 118 times fewer colors than Spot and
525 time the same number of colors. Owl, on the other hand, behaves better than
on automata-benchmarks, but it still generates more acceptance sets/colors
than COLA, with just 3 cases (out of 628) having the same number of colors
for both tools.
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