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Abstract. Good-for-Games (GfG) automata require that their nonde-
terminism can be resolved on-the-fly, while unambiguous automata guar-
antee that no word has more than one accepting run. These two mutu-
ally exclusive ways of restricted nondeterminism play their roles indepen-
dently in Markov chain model checking (MCMC) for almost a decade but
synthesising them seems hopeless: an automaton that is both GfG and
unambiguous is essentially deterministic. This work breaks this percep-
tion by combining the strengths of unambiguity with the GfG co-Büchi
minimisation recently proposed by Abu Radi and Kupferman. More pre-
cisely, this combination allows us to turn unambiguous automata to cer-
tain types of probabilistic automata that can be used for MCMC. The
resulting automata can be exponentially smaller, and we have provided a
family of automata exemplifying this state space reduction, which trans-
lates into a significant acceleration of MCMC.

Keywords: Unambiguous Büchi automata, Good-for-games automata,
Markov chains, Probabilistic model checking

1 Introduction

Markov chains are widely used across numerous application domains, including
computer science, engineering, operations research, and the modelling of popu-
lation growth and behaviour. Verifying Markov chains against ω-regular proper-
ties, such as Linear Temporal Logic (LTL) specifications [10] and Linear Dynamic
Logic (LDL) [8], has long been the one exemption to the rule that automata are
a perfect tool for the analysis of Markovian models. The automata suitable for
Markov chain model checking (MCMC) have to restrict their nondeterminism in
some way [10]. We consider two known types of restricted nondeterminism for
MCMC in this paper, namely good-for-games (GfG) and unambiguous variants.
These two types of automata have been applied in MCMC independently for
almost a decade.
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GfG automata [18] have the ability to resolve nondeterministic choices on-
the-fly. That is, a strategy exists for the automaton to generate an accepting
run transition by transition, even when an accepting word is given letter by
letter, such that the resolution of the nondeterminism does not depend on the
future. Klein et al. [21] first proved that GfG automata can be used in probabilis-
tic model checking, and thus in MCMC. Despite this, GfG automata have not
been widely adopted in state of the art tools for verifying ω-regular properties,
such as ePMC [14], PRISM [23], and IscasMC [16], due to the lack of effective
constructions of GfG automata.

Unambiguous automata have been more successful in MCMC than GfG au-
tomata. Unambiguous automata restrict the nondeterminism by guaranteeing
that every word has at most one accepting run. Unambiguity has gained trac-
tion in MCMC when Couvreur et al. [11] developed a polynomial-time algorithm
to model check against separated Büchi automata - a class of Büchi automata
that have disjoint languages from every pair of states. This reduced the com-
plexity of automata-based LTL model checking down to PSPACE, matching its
lower bound [10]. Recently, Baier et al. [5] have developed an NC approach to
model check against a more general and succinct class of automata than sepa-
rated Büchi automata called unambiguous Büchi automata (UBAs) [9]. Different
to GfG automata, there is also a rich set of sources of UBAs from LTL [25,20],
and LDL [24].

Furthermore, unambiguity retains the expressive power of Büchi automata:
UBAs can recognise all ω-regular languages [9], while GfG Büchi (or co-Büchi)
automata only accept the languages recognised by their deterministic counter-
parts [18,22]. On one hand, unambiguity retains the expressive power of the
ω-regular languages, but poses challenges in minimisation reduction of the au-
tomata. On the other hand, GfGness loses expressive power, but transition-based
GfG co-Büchi can benefit from a recent polynomial-time minimisation construc-
tion [1]. Both types of restricted nondeterminism have been independently stud-
ied for MCMC. A natural question arises: can we combine the strengths of un-
ambiguity and GfGness for MCMC? A trivial attempt would be to consider
unambiguous GfG automata, which actually can be made deterministic by re-
moving unreachable and unproductive states (cf. [6] for details). That is, we
would not only lose expressive power in this attempt, but would also have to
determinise the automaton.

Contributions. This work is the first successful effort to synergise unambiguity
and GfGness. We first show that, when the input UBA is deterministic, we can
directly apply the GfG co-Büchi minimisation construction to the deterministic
automaton. We then prove that the resultant minimised automaton is stochasti-
cally resolvable, meaning that we can turn it into a probabilistic automaton by
resolving the nondeterminism randomly such that the probabilistic automaton
accepts (resp. rejects) every word from the input automaton’s language (resp. its
complement language) with probability one. This specific probabilistic automa-
ton is well-suited for MCMC. The case for nondeterministic UBA, however, is
more challenging because the GfG minimisation algorithm does not work di-
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rectly on general UBAs. We address this challenge by proposing an algorithm
that accommodates both GfGness and unambiguity for MCMC (Section 4). Fur-
thermore, we provide a family of UBAs for which our proposed minimisation
reduction can reduce the state space exponentially. Empirical evaluations on
selected benchmarks show that our algorithm significantly accelerates MCMC,
thus making our contribution a valuable addition to the existing portfolio of
MCMC techniques.

Related Work. Other known types of automata suitable for MCMC are limit-
deterministic Büchi automata with mild constraints [15,27] and a more general
class called good-for-MDPs (GfM) automata [17,26]. We note that GfMness is
a generalisation of GfGness and minimising GfM Büchi automata is PSPACE-
hard [26]. Therefore, we do not consider GfM automata in this work. Klein et
al. [21] used the algorithm in [18] to construct GfG automata from LTL, which
are even larger than their deterministic counterparts. This highlights the need
for more efficient methods for constructing GfG automata.

The efficient minimisation algorithm of [1] only works for GfG co-Büchi au-
tomata. Our work bypasses this limit and allows for using GfG co-Büchi min-
imisation in MCMC against all ω-regular properties. Baier et al. [5] also work on
MCMC against UBAs. Thanks to our reduction algorithm for UBAs, our model
checking algorithm can be (possibly exponentially) more efficient than theirs for
certain properties.

Organisation of the Paper. We discuss the preliminaries in Section 2. In
Section 3, we present an alternative approach for model checking Markov chains
against DBA specifications using GfG automata. Section 4 introduces our al-
gorithm for model checking Markov chains against UBA specifications via GfG
automata. Next, in Section 5, we present a case study on a family of UBAs,
where our reduction achieves exponential state-space savings, followed by imple-
mentation details and experimental results demonstrating the better scalability
of our algorithm compared to existing UBA model checking methods. Finally,
we conclude in Section 6.

2 Preliminaries

Automata. A nondeterministic automaton is a tuple A = (Σ,Q, δ, q0, α) where
Σ is the alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ :
Q×Σ 7→ 2Q is the transition function and α ⊆ Q×Σ×Q is a set of transitions
for describing a transition-based acceptance condition. The transition function
δ induces a transition relation ∆A ⊆ Q × Σ × Q, where for every two states
p, q ∈ Q and letter a ∈ Σ, we have that (p, a, q) ∈ ∆A iff q ∈ δ(p, a). When
it is clear from the context, we omit the subscript A and directly write ∆. We
also extend δ to sets and words in a usual way, by letting δ(S, a) =

⋃
q∈S δ(q, a),

δ(S, ϵ) = S and δ(S, u · a) = δ(δ(S, u), a), where u ∈ Σ∗, a ∈ Σ and ϵ is the
empty word. Let δα(p, a) = {q | (p, a, q) ∈ α} and δᾱ(p, a) = {q | (p, a, q) /∈ α}.
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We use the terms α-transitions and ᾱ-transitions to refer to transitions in α and
in ∆ \ α, respectively.

A word w ∈ Σω is an infinite sequence of letters in Σ. A run of a word
w = a0a1 · · · ∈ Σω in A is an infinite sequence ρ = p0p1 · · · ∈ Qω of states
such that p0 = q0 and ∀i ∈ N, pi+1 ∈ δ(pi, ai). A run ρ is accepted by A if
it satisfies the acceptance condition α. We consider both Büchi and co-Büchi
acceptance conditions to determine which runs should be accepted. We say that
a run ρ satisfies the Büchi acceptance condition if, for infinitely many i ∈ N,
(pi, ai, pi+1) ∈ α, while ρ satisfies the co-Büchi acceptance condition if we only
have (pi, ai, pi+1) ∈ α for finitely many i. The language of A, denoted by L(A),
is the set of all words w with at least one accepting run. For q ∈ Q, let Aq be
the automaton obtained from A by setting q as the initial state.

We write L for the complement language of L, that is, L = Σω \ L. We say
that two states p, q ∈ Q are equivalent, denoted p ∼A q, if L(Ap) = L(Aq). Let
u be a finite word and L be an ω-language. We define the right language of u as
u−1L = {w ∈ L | uw ∈ L}.

We say that A is deterministic if, for all q ∈ Q, a ∈ Σ, we have |δ(q, a)| ≤ 1.
A is said to be unambiguous if there is at most one accepting run in A for
every word w ∈ Σω. A is said to have a diamond if there exist two states
q, q′ ∈ Q and a finite word w ∈ Σ∗, such that w has two different runs from
q to q′ in A. Otherwise, A is called diamond-free. An unambiguous automaton
can be made diamond-free in polynomial time. We use DBA/NBA/UBA for
deterministic/nondeterministic/unambiguous Büchi automata and DCA/NCA
for deterministic/nondeterministic co-Büchi automata.

An automaton A is called good-for-games (GfG) [18]3 if there is a strategy
function f : Σ∗ 7→ Q such that, for every accepting word w = a0a1 · · · , the
run ρf = f(ϵ)f(a0) · · · f(a0 · · · ai) · · · is an accepting run. We usually represent
a strategy function as a resolver automaton R = (M,m0, g), where M is the
set of memory states of the resolver, m0 ∈ M is the initial memory state and
g : M × Q × Σ 7→ M × Q is the deterministic transition function that selects
the successor for a state q ∈ Q and a ∈ Σ. As usual, we also extend g to
words such that g(m0, q0, ua) = g(g(m0, q0, u), a) for all u ∈ Σ∗ and a ∈ Σ,
where (m0, q0) = g(m0, q0, ϵ). Consequently, for all finite words u1, u2 ∈ Σ∗, if
g(m0, q0, u1) = g(m0, q0, u2), then f(u1) = f(u2).

In [1], a polynomial-time algorithm is presented that, given a GfG-NCA A,
computes a minimal GfG-NCA A′ such that L(A′) = L(A). The minimal GfG-
NCA A′ satisfies several important properties. For instance, A′ is semantically
deterministic, meaning that, for a state q ∈ Q in A′ and a letter a ∈ Σ, all
the a-successors of q (i.e., all states in δ(q, a)) are equivalent. A′ is also safe
deterministic, meaning all transitions are deterministic or α-transitions. That
is, for every state q ∈ Q and letter a ∈ Σ, we have that |δ(q, a)| ≤ 1 or δα(q, a) =
δ(q, a).

Components. Let G = (V,E) be a directed graph. For C ⊆ V and E′ ⊆ E
let (C,E′) denote a subgraph of G where every edge in E′ lies within C. A

3 For ω-automata, GfG automata are equivalent to history-deterministic automata.
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component (C,E′) is a strongly connected subgraph of G, i.e., for every two
vertices u, v ∈ C, there is a path from u to v via E′. A strongly connected
component (SCC) (C,E′) of G is a maximal, strongly connected subgraph of G,
i.e., there does not exist a strongly connected subgraph of G, (C ′, E′′), such that
C ⊊ C ′ or E′ ⊊ E′′. An SCC (C,E) is called a bottom SCC (BSCC) if there
is no path in G from any u ∈ C to another SCC (C ′, E′). The automaton A
induces a directed graph GA = (V,E) with V = Q, and (p, q) ∈ E iff for some
a ∈ Σ, q ∈ δ(p, a). The SCCs (or components) of A are in fact those of GA. A
safe component of A is an SCC of the graph Gᾱ

A = (Q,Eᾱ), where (p, q) ∈ Eᾱ

iff there exists a letter a ∈ Σ such that q ∈ δᾱ(p, a).

Markov Chains and Probability Measures. For a finite set S, we denote
column vectors by boldface letters such as x ∈ RS , and write x⊺ for the transpose
(a row vector) of x; in particular, 1 ∈ {1}S and 0 ∈ {0}S are column vectors
whose entries are all 1 and 0, respectively. We denote the vector entry for s ∈ S
as x(s) and write xC for the restriction of x to C ⊆ S. Let Distr(S) be the set of
all probability distributions on S. We denote the Dirac distribution concentrated
at some s ∈ S by ιs.

We consider Markov chains where transitions are labelled with letters from
the alphabet Σ of the automaton. A labelled Markov chain (LMC) is a tuple
M = ⟨S,Σ,M, s0⟩ where S is a finite and non-empty set of states, the al-
phabet is Σ (labels), M : Σ → [0, 1]S×S is the transition function such that∑

aM(a) is stochastic4 and s0 ∈ S is the initial state. M can be perceived as
a labelled weighted graph (WG) with S as the set of states and for a ∈ Σ,
M(a) ∈ [0, 1]S×S is the weighted adjacency matrix corresponding to transi-
tions with label a. A labelled path π = s0a0s1a1s2 . . . in M generates the
word w(π) = a0a1 . . . . We can talk about probability measures of measurable
subsets of Σω in the σ-algebra generated by basic cylinder sets. For a finite
word x = a0, . . . , an, the cylinder set Cyl(x) = xΣω is the set of all infinite
words with x as prefix. The probability measure of the set Cyl(x) is given by
Pr(Cyl(x)) = ιs0

⊺M(a0)M(a1) . . .M(an)1. Essentially, Pr(Cyl(x)) is the prob-
ability that x is generated by a path of length n in M. This can be extended
to all measurable sets generated by the cylinder sets in the standard way. In
particular ω-regular languages are measurable sets. Given M and an ω-regular
language L, let PrM(L) be the probability that a word generated randomly by
M is in L. We omit M when it is clear from context. For an automaton state
q ∈ Q and a state s ∈ S in M, Prs(L(Aq)) is the probability that a word gen-
erated by M is in the language L(Aq). We require the LMC be separated. This
means that for any two distinct states s, s′, and for any word w ∈ Σ∗, if there
exists a run from s on w, then there does not exist a run from s′ on w, and vice
versa. This is a mild constraint. As demonstrated in [5], we can satisfy this re-
quirement by making the name of each state part of the alphabet. Alternatively,
since we have letters on transitions, we can make the name of the state part of
the letter on each outgoing transition.

4 A nonnegative matrix is stochastic (resp. substochastic) if each row is stochastic
(resp. substochastic), that is, each row adds up to exactly one (resp. at most one).
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We also consider general weighted graphs W over the state space S and
matrix W . For C,D ⊆ S we write WC,D for the submatrix of W obtained by
deleting the rows not indexed by C and the columns not indexed by D. Similarly,
we writeW (C,E), where (C,E) is an SCC in the graph of the submatrix ofWC,C .

In this paper we are interested in the MCMC problem: given an LMC M
and a UBA U with initial states s0 and q0, respectively, we want to compute
the probability Prs0(L(Uq0)). In the following, we begin with the DBA specifi-
cations in Section 3, and then proceed to the more involved UBA specifications
in Section 4.

3 Model Checking against DBAs

Let M = (S,Σ,M, s0) be an LMC and D = (Σ,Q, δ, q0, α) be a complete de-
terministic automaton. The classic MCMC algorithm first builds the product
LMC D×M and then computes the probability of reaching the set K, denoted
PrD×M(♢K), where K is the set of all states in the accepting BSCCs of D×M.
Accepting BSCCs of D × M are BSCCs with at least one edge whose projec-
tion onto D lies in α. The probability PrM(L(D)) is equal to the reachability
probability of accepting BSCCs in D ×M.

In this section, we propose an alternative procedure to compute this prob-
ability by leveraging GfG automata minimisation. Our main idea is to con-
struct an intermediate probabilistic automaton (PA) that preserves the lan-
guage of D and analyse its product with M. A PA P = (Σ,Q, δ, q0, α) is a
nondeterministic automaton equipped with a randomised transition function
δ : Q × Σ 7→ Distr(Q), where from state q with letter a, transition to q′

is taken with probability δ(q, a)(q′). We often abuse the notation by writing
δ(q, a) to denote its support. Each word w ∈ Σω induces a probability mea-
sure PrwP on Qω in the usual way. The probability that P accepts w, denoted
by PrP(w), is the probability measure of all accepting runs of w on P, that is,
PrP(w) = PrwP({π | π is an accepting run of w}). For a detailed introduction to
PAs, please refer to [3].

Moreover, we require our PAs to be 0/1-PA. A PA P is 0/1-PA if, for any
word w ∈ Σω, we have either PrP(w) = 1 or PrP(w) = 0. For a 0/1-PA P,
and with a slight abuse of notation, we say that a word w is accepted by P
(i.e., w ∈ L(P)) if PrP(w) = 1. In this paper, we focus on 0/1-PAs that accept
ω-regular languages.

In general, a 0/1-PA P may accept a non-ω-regular language [3, Exam-
ple 4.2.1]. Note that for some w /∈ L(P), there may exist accepting runs in
P, but the probability measure of such accepting runs is 0. Additionally, we
assume that P is complete, meaning that for all w ∈ Σω, we have PrwP({π |
π is a run over w}) = 1.

Given an LMC M, and state s in M, let Prs(L(Pq)) be the probability
that a random word generated in M starting from s lies in L(Pq). We will
first describe how we can compute the probabilities Prs(L(Pq)) by solving a
system of linear equations on the product of P and M. Given a 0/1-PA P =
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(Σ,Q, δ, q0, α), we define the product P ×M = (Σ,Q×S, δ⊗, ⟨q0s0⟩, α⊗) where
Q × S is the set of states, ⟨q0s0⟩ ∈ Q × S is the initial state, α⊗ ⊆ ∆P×M is
the set of α-transitions of P ×M such that (⟨qs⟩, a, ⟨q′s′⟩) ∈ α⊗ if (q, a, q′) ∈ α,
and δ⊗ : (Q × S) × Σ 7→ Distr(Q × S) is the transition function such that
δ⊗(⟨qs⟩, a)(⟨q′s′⟩) =M(a)(s, s′) ·δ(q, a)(q′) for all ⟨qs⟩, ⟨q′s′⟩ ∈ Q×S and a ∈ Σ.

The definition of the product can be easily adapted when M is a weighted
graph. We show in Proposition 2 that P can be used to model check M
by analysing the product P × M. The product P × M can be effectively
represented by the matrix B⊗ ∈ R(Q×S)×(Q×S), where B⊗(⟨qs⟩, ⟨q′s′⟩) =∑

a∈Σ δ⊗(⟨qs⟩, a)(⟨q′s′⟩) for all ⟨qs⟩, ⟨q′s′⟩ ∈ Q× S.
It is not hard to see that the matrix B⊗ is stochastic and P×M is a Markov

chain. The linear equation system in Eq. (1) has a unique solution, denoted by χ.
A proof of uniqueness can be found in [4, Theorem 10.19]. The value χ(⟨qs⟩)
precisely represents the probability of ⟨qs⟩ reaching an accepting BSCC.

x = B⊗x

for all states c in accepting BSCCs x(c) = 1

for all states c in rejecting BSCCs x(c) = 0 (1)

Now we establish some useful properties of 0/1-PAs: they are semantically
deterministic and can be complemented by simply negating the acceptance con-
dition, similar to deterministic automata.

Lemma 1. Let P be a 0/1-PA.

(1) For any a ∈ Σ, q ∈ Q and q1, q2 ∈ δ(q, a), we have L(Pq1) = L(Pq2).
(2) Let P ′ be the PA obtained by negating the acceptance condition. Then P ′ is

also a 0/1-PA. Moreover, L(P ′) = L(P).

Using Lemma 1(1), we show:

Proposition 2. Let M be an LMC, and P be a 0/1-PA recognising the DBA
language L. Then Prs(L(Pq)) = χ(⟨qs⟩) for all ⟨qs⟩ ∈ Q × S. In particular,
PrM(L) = PrM×P(♢K) where K is the set of all states in the accepting BSCCs
of P ×M.

Proposition 2 is a simple yet effective generalisation of existing similar stan-
dard result for deterministic automata [4] since DBAs and DCAs can be seen as
0/1-PAs by transitioning to the only successor with probability one.

Our source of 0/1-PA is a property satisfied by the minimised GfG-NCA au-
tomata in [1] called stochastic resolvability. Stochastically resolvable automata
can be turned into language-preserving 0/1-PAs by resolving nondetermin-
ism using good (positional) stochastic resolvers. A good stochastic resolver
R : Q × Σ 7→ Distr(Q) for nondeterministic automaton A is simply a ran-
domised transition function that turns A into a 0/1-PA, denoted by A×R, such
that L(A) = L(A × R). A stochastic resolver is said to be uniform when for
every q and a, R(q, a) is the uniform distribution over δ(q, a).
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With the preparations above, we now propose the following steps to model
check an LMC M against a DBA D: (1) regard (complete) DBA D as a DCA
C, (2) minimise C to a GfG-NCA G using [1], (3) resolve the nondeterminism
by random choices and obtain a 0/1 PA P with Büchi acceptance condition s.t.
L(D) = L(P), (4) compute the product P×M, and (5) calculate the reachability
probability of accepting BSCCs by solving Eq. (1). The 0/1-PA P is expected to
be smaller than D to make our approach more efficient compared to the classic
MCMC against DBAs.

The main observation is that the minimal GfG-NCA G produced by [1] has
a very simple good stochastic resolver R, the uniform stochastic resolver. This
makes G a stochastically resolvable automaton. Then, by Lemma 1(2), we can
obtain a 0/1-PA of L(D) by interpreting the α-transitions as accepting in G.

Lemma 3. Let G be an NCA that is semantically deterministic and safe deter-
ministic and let R be a uniform stochastic resolver for G. Then, the PA G × R
with Büchi acceptance condition is a 0/1-PA. Also, L(G ×R) = L(D).

We sketch our proof idea as follows. Let w ∈ Σω. First, assume that
w ∈ L(D), i.e., w /∈ L(G). It immediately follows that PrG×R(w) = 1 since
all runs of G over w are rejecting. Now we assume that w ̸∈ L(D), i.e.
w ∈ L(G) = L(C). Since G is safe deterministic, every accepting run of G
over a word w ∈ L(C) will eventually get trapped in a deterministic safe com-
ponent. Therefore, the probability measure of every accepting run of G over
w is positive because as soon as the run enters the deterministic safe compo-
nent, all visited transitions have probability one. Assume by contradiction that
PrG×R(w) = PrwG×R({π | π is rejecting run over w in G}) > 0. This means that
there exists a state q ∈ δ(q0, u) such that the probability measure of rejecting
runs of w′ in G from q is 1 where w = uw′. However, since G is semantically
deterministic and w ∈ L(G), we have w′ ∈ L(Gq). This indicates that there is a
run of G over w′ from q that goes to a deterministic safe component and stays
there. But then this entails that the probability measure of accepting runs over
w′ in G from q is positive, leading to contradiction. Hence, PrG×R(w) = 0. We
can conclude that G is stochastically resolvable and L(D) = L(G ×R).

Let P = G × R where R is the uniform stochastic resolver for G. With
Lemma 3 and Proposition 2, our main result of this section immediately follows.

Theorem 4. Given an LMC M and a DBA D, we have PrM(L(D)) = χ(q0)
where q0 is the initial state of P ×M and χ is the unique solution of the linear
equation system Eq. (1).

According to [21], GfG automata can be used to model check LMCs by con-
structing the product of M and G, where the nondeterminism in G is resolved by
incorporating additional actions. This process yields a product Markov decision
process (MDP) rather than a Markov chain. The probability PrM(L(D)) can
then be expressed as one minus the maximum satisfiability of L(G) within the
resulting MDP. Nonetheless, our algorithm still provides some advantage in this
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context, as it reduces the computational complexity from solving a linear pro-
gramming problem for MDPs to solving a linear system of equations for LMCs.
Beyond this advantage, the MCMC algorithm against DBA specifications paves
the way towards our primary objective—MCMC against UBA specifications.

4 Model Checking against UBAs

The DBA languages cannot express all ω-regular properties. This section con-
siders UBAs, which can represent all ω-regular properties, as specifications. Our
MCMC algorithm against UBAs leverages similar idea for the DBA case which
also constructs a PA P using the minimisation algorithm in [1]. The first chal-
lenge we face here is that the minimisation construction only works on GfG-
NCAs but our input automaton U is unambiguous. If we assume that U is
both GfG and unambiguous, then the automaton is essentially deterministic5

[6, Proposition 9]; this again will lose expressiveness.
We address the first challenge by determinising the UBA U with auxiliary

letters. That is, we make the nondeterministic choices explicit by marking each
choice with different fresh letters. This way, we obtain a complete DBA D over
an extended alphabet Σ′, and regard it as a DCA C. Since C is deterministic,
we can again compute a minimal GfG-NCA G accepting L(C). Clearly, G has
a positional stochastic resolver according to Lemma 3. However, G is defined
over Σ′, which is different than the alphabet Σ in the LMC M. Our second
challenge is how to define the product of M and P. To resolve this, we turn M
into a weighted graph W over Σ′ in a way that the product G × W can guide
G to obtain a positional stochastic resolver, yielding the product P ×W. When
we map Σ′ back to Σ in the product P ×W, we can still calculate the correct
probability PrM(L(U)).

Let M = (S,Σ,M, s0) be the given LMC and U = (Σ,Q, δ, q0, α) the given
UBA. We dedicate the rest of this section to describe in detail how we address
the two challenges above and present our new MCMC algorithm.

4.1 Product Construction

We first describe our determinisation approach for U . This approach pre-
serves the underlying graph of U but modifies the alphabet along with pro-
viding means to recover the original language. In theory, we can obtain a DBA
D = ⟨Σ′, Q, q0, δD, αD⟩ over new alphabet Σ′ ⊆ Σ × N from U , using any map
p : ∆U 7→ ∆D such that any two transitions (q1, a, q

′
1), (q1, a, q

′
2) in ∆U with

q′1 ̸= q′2, are mapped by p to transitions in ∆D with ⟨a, i⟩ and ⟨a, j⟩, that is, two
distinct labels from Σ′. This gives a natural projection map p−1 : Σ′ 7→ Σ, that
is, p−1(⟨a, i⟩) = a for all ⟨a, i⟩ ∈ Σ′, which can be naturally extended to infinite
words and languages.

5 GfG unambiguous automata are determinisable by pruning, meaning they can be
seen as deterministic automata with additional transitions on top.
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For a given state q ∈ Q, a letter a ∈ Σ, without loss of generality we can
assume an ordering on the successors states δ(q, a), i.e. δ(q, a) = {q′0, · · · , q′h}.
We define p((q, a, q′i)) = (q, a′, q′i) where a

′ = ⟨a, i⟩ ∈ Σ′. With αD = p(αU ), it is
easy to see that L(U) = p−1(L(D)). Essentially in the transitions of D we have
encoded the information regarding which successor was taken in U . Hence a word
in L(D) uniquely determines its origin word in L(U) obtained by applying p−1.
This gives us the following crucial observation on how D retains information on
the unambiguity of U .
Lemma 5. For two distinct words w1, w2 ∈ L(D), it always holds that
p−1(w1) ̸= p−1(w2).

We assume D is complete and can also be read as a DCA C with L(C) = L(D).

{q0} {q1}

{q2}

q$

π, σ

π

#

σσ

#, π

{q1, q2} {q0, q2}

{q0, q1}

#

π, σ

π
σσ

π

#

#
#

Σ\$ Σ\$

Σ\$

Σ\$

Σ\$

Σ\$

$

$

{q0} {q1}

{q2}

q$

⟨π, 1⟩, ⟨σ, 1⟩

⟨π, 1⟩
⟨#, 1⟩

⟨σ, 1⟩⟨σ, 1⟩

⟨#, 1⟩, ⟨π, 1⟩

{q1, q2} {q0, q2}

{q0, q1}

⟨#, 1⟩

⟨π, 1⟩, ⟨σ, 1⟩

⟨π, 1⟩ ⟨σ, 1⟩⟨σ, 1⟩

⟨π, 1⟩

⟨#, 1⟩

⟨#, 1⟩ ⟨#, 1⟩

Σ0
\$

Σ0
\$

Σ0
\$

Σ0
\$

Σ0
\$

Σ0
\$

⟨$, 0⟩

⟨$, 1⟩

⊥

Σ\$ × {0, 1}

Σ′

Fig. 1: Left: An example UBA U3 with alphabet Σ = {π, σ,#, $} ; let Σ\$ = {π, σ,#}.
The dashed transitions are α-transitions which are accepting for Büchi automata.
Right: Determinise the UBA one the left into a complete DBA with Σ′ = Σ × {0, 1}.
Let Σ0

\$ = Σ\$ × {0}.

Example 6. The UBA U3 (shown on the left of Fig. 1) belongs to a family of
UBAs {Ui}i for which our algorithm produces an exponentially smaller product.
Since there are at most two nondeterministic choices at every state in U3 , we
can resolve the nondeterminism with a boolean variable. A value of 0 (false) will
direct transitions to the state q$, whereas a value of 1 will take the transition
that doesn’t lead to q$. The result is a DBA D3 over Σ′ = Σ × {0, 1}; see the
right of Fig. 1. Since we will later treat D3 as a DCA accepting the complement
language, we make it complete by adding a new sink state ⊥. Specifically, we
add non-accepting ⟨$, 0⟩- and ⟨$, 1⟩-transitions from q to ⊥ for q ∈ 2{q0,q1,q2}

and for the missing letters from q$ to ⊥, and a non-accepting self-loop on ⊥ for
all letters in Σ′. Transitions from q ∈ 2{q0,q1,q2} to ⊥ are omitted in the figure.
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The projection p−1, which maps every letter of Σ′ to a letter of Σ, is defined
as follows: p−1(⟨a, i⟩) = a for all a ∈ Σ and i ∈ {0, 1}. ⊓⊔

By applying the minimisation algorithm from [1] on C, we obtain a minimal
GfG-NCA G = ⟨Σ′, QG , q0G , δG , αG⟩ that recognises the same language as C. Let
R be a uniform stochastic resolver for G. By Lemma 3, the PA P with a Büchi
acceptance condition, defined as P = G × R, is a 0/1-PA, and its language
satisfies L(P) = L(D). Formally, P differs from G only in its transition function,
which is given by δP(q, a)(q

′) = 1
|δG(q,a)| for all (q, a, q

′) ∈ ∆G . We have:

Lemma 7. L(U) = p−1(L(D)) = p−1(L(P)).

Being a 0/1-PA, P also enjoys the properties given in Lemma 1. That is, P is
semantically deterministic and can be complemented by simply complementing
the acceptance condition. To show that P can be used to model check LMCs,
we first establish additional properties of P concerning its projected languages
over Σ. Firstly, since P is semantically deterministic, for ⟨a, i⟩ ∈ Σ′ and a state
q in P, projected languages of two ⟨a, i⟩-successors of q would also be the same.
Secondly, let ⟨a, i⟩, ⟨a, j⟩ ∈ Σ′ be two distinct letters. Let q ∈ QG be a reachable
state, and q1 ∈ δP(q, ⟨a, i⟩) and q2 ∈ δP(q, ⟨a, j⟩) be two successors. Since q
is reachable, for some w ∈ Σ′∗ having a run from initial state to q, we have
w⟨a, i⟩L(Pq1) ∪ w⟨a, j⟩L(Pq2) ⊆ L(P) = L(D). From Lemma 5 it follows that
p−1(L(Pq1)) ∩ p−1(L(Pq2)) = ∅. Hence we have the following lemma.

Lemma 8. Let q ∈ QG, ⟨a, i⟩ and ⟨a, j⟩ be two different letters in Σ′. We have:

(1) for all states q1, q2 ∈ δP(q, ⟨a, i⟩), it holds that p−1(L(Pq1))) = p−1(L(Pq2))
(2) for states q1 ∈ δP(q, ⟨a, i⟩) and q2 ∈ δP(q, ⟨a, j⟩), it holds that p−1(L(Pq1))∩

p−1(L(Pq2)) = ∅.

Example 9. Consider the complete DBA D3 in Example 6. We now read it as a
DCA C3. Since DCAs are GfG, we can apply the algorithm from [1] to obtain
a minimal GfG-NCA G3; see left of Fig. 2. We then turn the NCA into a 0/1-
PA P by turning all transitions to randomised ones. Note that ignoring the
probabilities and projecting Σ′ down to Σ does not result in an automaton that
is either unambiguous or diamond-free. E.g. ##$ creates three paths from q0
back to q0, and (##$)ω has an uncountable set of accepting runs. ⊓⊔

Lemma 8 is a key result of this paper, enabling us to combine good-for-
gameness and unambiguity without losing the expressive power of ω-regular
languages. The main idea is to leverage the good-for-game properties to resolve
nondeterminism in the outer layer of the language over Σ′, while exploiting the
unambiguity inherent in the inner layer of the language over Σ. This is facilitated
by the mapping function p.

To align the LMC M with the alphabet Σ′ of P, we transform M, originally
defined over Σ, into a weighted graph (WG) W with alphabet Σ′. Let W =
⟨S,Σ′,W, s0⟩, where W (a) =M(p−1(a)) for all a ∈ Σ′.
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: Σ\$ × {0, 1}
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: Σ′
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: ⟨$, 0⟩, ⟨$, 1⟩

1
4
: ⟨$, 0⟩, ⟨$, 1⟩

1
4
: ⟨$, 0⟩, ⟨$, 1⟩Positive MCC

Fig. 2: Left: Read the complete DBA in Example 6 as a DCA and minimise it into a
GfG-NCA G3 using the algorithm from [1]. The fractions in orange should be disre-
garded when reading it as an NCA. We then turn it into a 0/1-PA P by applying a
stochastic resolver on G3. Right: The product of the GfG-NCA G3 and the WG W
(or the PA P and the WG W). There is one positive MCC in this product which is
highlighted in thick dashed box.

Example 10. The LMC M = ⟨S,Σ,M, s⟩ generates infinite words over Σ =
{σ, π,#, $} uniformly at random, with a single state s and M(a)(s, s) = 1

4 for
all a ∈ Σ (see left of the figure below). Since there is only one state in the LMC,
it is obviously separated. Transforming M into a WG W = ⟨S,Σ′,W, s⟩ over
Σ′ = Σ × {0, 1} preserves the state space, and W (a′)(s, s) = 1

4 for all a′ ∈ Σ′

(see right of the figure below). ⊓⊔

s 1
4
: a ∈ Σ s 1

4
: a′ ∈ Σ′

With both challenges being addressed, we are ready to define the product
WG P×W = (Σ′, Q⊗, δP×W , ⟨q0Gs0⟩, α⊗), the state space Q⊗ of which is equal
to QG × S. As usual, (⟨qs⟩, a, ⟨q′s′⟩) ∈ α⊗ if (q, a, q′) ∈ αG .

This product can actually be seen as the product of P and M where there
is a transition from ⟨qs⟩ to ⟨q′s′⟩ over a letter a ∈ Σ′ if M(p−1(a))(s, s′) > 0
and (q, a, q′) ∈ ∆P . It is important to use the maps p and p−1 in the model
checking procedure to associate the language L(D) with the language L(U), in
particular, deriving the corresponding linear equations.

We define the matrix B⊗ ∈ RQ⊗×Q⊗ , where B⊗(⟨qs⟩, ⟨q′s′⟩) =∑
a∈Σ′ δP×W(⟨qs⟩, a)(⟨q′s′⟩) for all ⟨qs⟩, ⟨q′s′⟩ ∈ Q⊗. Unlike the matrix in



Accelerating Markov Chain Model Checking 13

Eq. (1), the matrix B⊗ here may not be stochastic. We conclude this subsec-
tion by constructing the basic linear equation system x = B⊗x to compute
the probability PrM(L(U)). Hereafter, we use χ(⟨qs⟩) to denote the proba-
bility Prs(p

−1(L(Pq))) for simplicity. Based on the relationship between the
languages of automata (Lemma 7), we have χ(⟨q0Gs0⟩) = Prs0(p

−1(L(P))) =
Prs0(L(U)) = PrM(L(U)). Using Lemma 8 and that the LMC is separated, we
have the following.

Proposition 11. Let M be an LMC and U be a UBA. The vector χ satisfies
x = B⊗x.

Proposition 11 only provides a basic linear equation system, but it does not
answer the following two questions: how to identify accepting components, and
how to make sure that the obtained linear equation system has a unique solution.
We address these questions in the remainder of this section.

4.2 Analysing MCCs of the Product

In the DBA case, we add additional equations—one for each BSCC—to ensure
a unique solution (cf. Eq. (1)). Since the underlying matrix is stochastic, it is
straightforward that, for any state in a BSCC, if an outgoing transition labelled
with a belongs to the BSCC, then all other outgoing transitions labelled with
a must also be within the BSCC; otherwise, the SCC is transient. In the UBA
case, however, since the matrix B⊗ may not be stochastic, rather than looking
at BSCCs, we focus on the components of P ×W that are closed and maximal,
which we refer to as maximal closed components (MCCs). We call a component
(C,E) closed if, for any state q ∈ C and any letter a ∈ Σ′, either all or none of
a-successors of q lie in C, i.e. δ(q, a) ⊆ C or δ(q, a)∩C = ∅. A closed component
(C,E) is maximal if there does not exist a closed component (C ′, E′) such that
C ⊊ C ′ or E ⊊ E′. Alg. 1 computes MCCs efficiently.6

Algorithm 1: MCC Computation

1 repeat
2 compute SCCs of P ×W;
3 if there exist an SCC (C,E), a state ⟨qs⟩ ∈ C and a letter a ∈ Σ′ such

that (⟨qs⟩, a, ⟨q′s′⟩) ∈ ∆P×W and ⟨qs⟩, ⟨q′s′⟩ belong to different SCCs
4 then
5 remove all transitions labelled with a from ⟨qs⟩ in C;

6 until no further changes.

An MCC (C,E) is called positive if it is accepting, meaning that it contains
some accepting transition, and recurrent if there exists a positive solution x

6 MCC is closely related to maximal end components (MECs) in Markov decision
processes (MDPs). Alg. 1 is an adaption to MCC of the standard algorithm for
computing MECs in MDPs, see e.g. [4, Algorithm 47].
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to the following linear equation system: B
(C,C)
⊗ x = x and x(c) = x(d) for all

c, d ∈ C such that c and d can be reached simultaneously from some state by the
same word. States c and d are language equivalent when P×W is interpreted as
a Büchi automaton, which entails from Lemma 8. In case the underlying matrix
B⊗ is stochastic, the positive MCCs are accepting BSCCs. Thus, in the DBA
case, all accepting BSCCs are positive MCCs.

For a state ⟨qs⟩ in P ×W that cannot reach a positive MCC, the probability
χ(⟨qs⟩) is zero. Consequently, we can add the equations x(⟨qs⟩) = 0 to our linear
equation system for all such states ⟨qs⟩ that cannot reach a positive MCC.

Proposition 12. For a state ⟨qs⟩ of P ×W that cannot reach a positive MCC,
we have χ(⟨qs⟩) = 0.

We can also show that the probability that the UBA U accepts a word ran-
domly generated by the LMC M is positive if, and only if, a positive MCC exists
in P × W. Hence, for qualitative model checking, it suffices to check whether
there is a positive MCC.

Proposition 13. (Qualitative MCMC) PrM(L(U)) > 0 iff the product P ×W
has a positive MCC.

For positive MCCs (C,E) of P×W, the key observation is that each positive
MCC includes all transitions within it and can, therefore, be referred to simply
as C. This also entails that the projection of a positive MCC onto the states of
the LMC is a BSCC of the LMC. Moreover, there exist sets called cuts that can
be used to compute the values χ(⟨qs⟩) for the states ⟨qs⟩. Cuts were introduced
in [5] for MCMC against UBA specifications. Intuitively, these cuts are subsets
K ⊆ C of states with pairwise disjoint languages over Σ, such that almost all
words have an accepting run starting from some state q ∈ K. We denote the
transition function of P ×W over Σ by δ⊗ : Q⊗ ×Σ → 2Q⊗ , defined as follows:
q′ ∈ δ⊗(q, a) if and only if there exists a′ ∈ Σ′ such that p−1(a′) = a and
δP×W(q, a′)(q′) > 0. For an MCC C, we write δC⊗ to denote the restriction of δ⊗
to C.

A subset K ⊆ C is a cut for a positive MCC C if it satisfies the following
conditions: (1) K ⊆ δ⊗(c, v) for some c = ⟨qs⟩ ∈ C and v ∈ Σ∗, (2) δ⊗(K,w) ̸= ∅
for all w ∈ Σ∗ such that w can be generated in M from some s where ⟨qs⟩ ∈ K,
and (3) all states in K are language disjoint.7

Given a cut K ⊆ C, we call its characteristic vector µC ∈ {0, 1}C a cut
vector, that is, µC(k) = 1 iff k ∈ K. A cut can be computed in polynomial time
in the size of the positive MCC C using Alg. 2. Our cut computation is inspired
by [5]; however, our algorithm additionally accounts for language equivalence of
states, ∼P×W where P ×W is read as a Büchi automaton, mainly because the
product P ×W is neither unambiguous nor diamond-free (cf. Example 9).

The following lemma summarises the key properties of cuts that we will need.

Lemma 14. Let C be a positive MCC. Then

7 The cuts defined in [5] did not require (3), as any set K satisfying (1) would auto-
matically satisfy (3) in their product due to its unambiguity and diamond-freeness.
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Algorithm 2: Computing a cut K of a positive MCC (C,E)

1 c ∈ C (c can be any state in C);
2 w := ε (the empty word);

3 while ∃v ∈ Σ∗ and d ̸∼P×W c with {c, d} ⊆ δC⊗(c, v) and δC⊗(d,w) ̸= ∅ do
4 w := vw;

5 return K = δC⊗(c, w)/∼P×W .

(1) C has a cut K ⊆ C and µ⊺
CχC = 1, that is,

∑
k∈K χ(k) = 1.

(2) One can compute a cut K for C in polynomial time.

Now, we are ready to present the complete linear equation system:

x = B⊗x

for all positive MCCs C of P ×W : µ⊺
CxC = 1

[where µC is a cut vector for the positive MCC C]

for all states c that cannot reach a positive MCC: x(c) = 0 (2)

By combining Propositions 11, 12, and 13, and Lemma 14, we can demon-
strate that Eq. (2) has a unique solution v, which corresponds to χ. Conse-
quently, we can prove Alg. 3, which summarises our approach to model checking
LMCs against UBA specifications, correctly computes the satisfying probability.

Theorem 15. (Quantitative MCMC) Given an LMC M and a UBA U , the
linear equation system Eq. (2) has a unique solution v. Moreover, we have v = χ,
and thus PrM(L(U)) = v(q0), where q0 denotes the initial state in P ×W.

Algorithm 3: Summary of the overall algorithm

1 Determinise the UBA U into a complete DBA D on the new alphabet Σ′;
Read D as a DCA C;

2 Obtain the minimal GfG-NCA G which is language equivalent to C by running
the algorithm in [1] ;

3 Turn the LMC M into a WG W on Σ′;
4 Obtain a 0/1-PA P by applying a positional stochastic resolver on G ;
5 Build the product P ×W, and denote the underlying matrix as B⊗;
6 return χ(q0) where q0 is the initial state of P ×W and χ is the unique

solution of the linear equation system Eq. (2).

Example 16. The product of the PA P in Example 9 and the WG W in Ex-
ample 10 is shown on the right of Fig. 2. There is a single accepting MCC
(C,E) highlighted in this product, which consists of all four states of the product
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⟨q0s⟩, ⟨q1s⟩, ⟨q2s⟩, ⟨q$s⟩ and all transitions between them. We have B
(C,C)
⊗ x = x

and x(⟨q0s⟩) = x(⟨q1s⟩) = x(⟨q2s⟩), which indicates that this MCC is recurrent.
Thus, the probability is positive that the given UBA U3 accepts a word ran-
domly generated by the LMC M. This is indeed the case, as the probability is
3
4 . This is because the probability that a randomly generated word in M has
finitely many $ is 0. And among the words containing infinitely many $, the set
of words rejected by the UBA U3 is exactly {$w | w ∈ Σω} - all ω-words that
start with $. These words are generated by the LMC M with a probability of 1

4 .
The probability is determined by adding an equation for the cut of the positive
MCC, µ⊺

CxC = 1, and an equation x(⟨⊥s⟩) = 0 for states that cannot reach a
positive MCC. A cut K = {⟨qis⟩, ⟨q$s⟩} for any i ∈ {0, 1, 2}, thus a cut vector,
can be computed by running Alg. 2. ⊓⊔

Correctness Proofs. For proof of correctness, we establish the existence of
a good and fair resolver R for the product G×W. This enables the construction
of the product WG G ×W ×R over Σ′ and B⊗′ over Σ.

The product G ×W differs from P ×W only in terms of its transition func-
tion. The resolver is termed good for G ×W because, for every word w ∈ L(G)
generated by W, the run of G × W × R on w visits an α-transition only
finitely often. It is fair as, for every ω-word w = a0a1 · · · , if a transition
(⟨qsm⟩, a, ⟨q′s′m′⟩) ∈ ∆G×W×R has been visited infinitely often, then, for all
transitions (⟨qs⟩, a, ⟨q′′s′⟩) ∈ ∆G×W , some transition (⟨qsm′′⟩, a, ⟨q′′s′m′′′⟩) ∈
∆G×W×R must be visited infinitely often as well. In our approach, the stochas-
tic resolver takes the place of the good and fair resolver. It is good since it
“preserves” the language of U ×M when projecting P ×W back to the original
alphabet, and it is fair in the sense that if an a-transition of a state is taken
infinitely often, then all its a-transitions must be taken infinitely often with
probability one.

The final product WG, B⊗′ over Σ, is both diamond-free and unambiguous,
enabling us to adapt the algorithm from [5] for both qualitative and quantitative
model checking. This allows us to use the structural similarity between B⊗′ and
P ×W to establish the correctness of our approach. The full proof is presented
in the full version.

5 Experiments

In this section, we present experimental results from our implementation of our
algorithm for model checking LMCs against UBAs and compare our implemen-
tation against the one in [5]. Section 5.1 describes results validating exponential
speed-up of our algorithm using a family of UBAs, for which the resulting au-
tomata are exponentially smaller after GfG minimisation. Section 5.2 compares
the sizes of automata before and after automata transformation with bench-
marks from [5], highlighting how our proposed algorithm effectively reduces the
state sizes of automata across these benchmarks.
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5.1 Case Study: A Family of UBAs with Exponential Gain

We substantiate our claims of exponential speed up in Markov chain model
checking by providing a family of UBAs for which our algorithm produces an
exponentially smaller product graph in the final stage of the algorithm. The
UBA U3 in this family is illustrated on the left of Fig. 1, while the GfG-NCA G3

is on the left of Fig. 2.

Theorem 17. There exists a family of UBAs {Un}n≥2 with |Un| = Ω(2n) such
that the GfG automata Gn produced as a sub-routine of Alg. 3 has size O(n).

Below, we define this family of UBAs and then give a brief description of
the languages they accept. The construction of these UBAs are inspired from
the family of DCAs in [22]. A UBA Un = (Σ,Qn, δn, {q0}, αn) over the alphabet
Σ = {σ, π,#, $} with initial state {q0} in the family consists of

– set of states Qn = {q$}∪2Bn for Bn = {q0, . . . , qn−1};
– the transition function δn producing the set of transitions ∆n ⊆ Qn×Σ×Qn:
σ: (P, σ, P ′)∈∆n for P ′ =

{
q(i+1) mod n | qi ∈ P

}
,

π: (P, π, P ′)∈∆n for P ′ = {qi | qi∈P ∧ i≥2}∪
{
q(i+1) mod 2 | qi∈P ∧ i<2

}
,

#: (P,#, P ′)∈∆n for P ′ is {q1, . . . , qn−1} if P={q0} and P\{q0} otherwise,
$: (P, a, q$)∈∆n ∀P∈2Bn , a∈Σ\$ and (q$, $, {q0}), (q$, $, q$)∈∆n;

– the set of transitions αn ⊆ ∆n describing the acceptance condition: αn =
{(P1,#, P2)⊆∆n | q0∈P1} ∪ {(P, a, q$) | P∈2Bn} ∪ {(q$, $, {q0}), (q$, $, q$)}.

Similar to [22], each letter in Σ represents an action performed using an infinite
set of tokens and a set Bn of n boxes. Initially, each box has exactly one token.
σ moves tokens cyclically, i.e. moves token from qi to q(i+1) mod n for every i; π
swaps the tokens in boxes q0 and q1; # discards the token in box q0, replacing
with a new one; and $ discards tokens from all boxes and replaces with new
ones. The language L(Un) is the set of all infinite sequences of actions such
that any token present in some box at any instance is eventually discarded. The
automaton Un operates by tracking tokens within possible sets of boxes using
states P ⊆ 2Bn or by predicting a $ action through the designated state q$. More
details and proofs can be found in the full version.

Implementation and Experiments. We have implemented a probabilis-
tic model-checking procedure for LMCs and UBA specifications using the al-
gorithm described in Section 4. This implementationextends the probabilistic
model checker PRISM [23]. This enables a comparison with the implementa-
tion of the algorithm presented in [5, Section 8], which we refer to as PRISM
UBA. All experiments were carried out on a computer with one Apple M3 8-
core CPU with 16GB of RAM running MacOS and a time limit of 30 minutes.
Our implementation consists of two components: the first is a stand-alone tool
that performs UBA determinisation and GfG-NCA minimisation (lines 1–2 of
Alg. 3), and the second is our model-checking algorithm (starting from line 3
of Alg. 3), which takes the GfG-NCA generated by the first component and the
input LMC. The first component is implemented in C++ and built on top of
the Spot automata library [13]: it takes as input a UBA in HOA format [2],
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Table 1: Comparison of PRISM UBA from [5] (rank-based) and our algorithm for
model checking against a family of UBAs (n ∈ {3, . . . , 8}) on a randomly generated
LMC with 20 states. The table shows the number of states in the automata, product
sizes, and model checking times (ttotal). For our algorithm, ttotal includes ttr (UBA
determinisation and GfG minimisation, lines 1–2 of Alg. 3) and tmc (model checking
the minimal GfG automaton, starting at line 3). A dash (‘-’) indicates a timeout (30
min) or a stack overflow (1 GB).

n
PRISM UBA [5] Our Algorithm

UBA Product ttotal GfG Product ttotal ttr tmc

3 7 100 0.324 s 5 100 0.384 s 0.052 s 0.332 s
4 15 200 0.882 s 6 120 0.434 s 0.021 s 0.413 s
5 31 400 7.220 s 7 140 0.471 s 0.077 s 0.394 s
6 63 800 87.527 s 8 160 0.513 s 0.059 s 0.454 s
7 127 1600 1201.652 s 9 180 0.583 s 0.117 s 0.466 s
8 255 3200 - 10 200 0.513 s 0.102 s 0.411 s

determinises the UBA to a DCA using the approach from Section 4.1, minimises
the DCA using [1], and outputs the minimal GfG-NCA in HOA format.

Similar to PRISM UBA, the second component is also based on the explicit
engine of PRISM, where the Markov chain is represented explicitly. Our im-
plementation supports direct verification against a path specification given by
a UBA provided in the HOA format [2]. For the linear algebra parts of the
algorithms, we use the COLT library [19], as also used in [5].

We consider direct model checking against UBA specifications, where the
UBAs are taken from the family described earlier in this section. The experiments
were conducted on a simple randomly generated LMC. Table 1 presents the
results for n ∈ {3, . . . , 8}, obtained with a timeout of 30 minutes and a stack size
of 1 GB. These results demonstrate that, for this family of UBAs, our algorithm
is competitive with the UBA model checking algorithm from [5], particularly for
n ≥ 4, as highlighted in the table. Notably, PRISM UBA becomes unsuccessful
for n ≥ 8, unable to model check against the UBAs due to the immense size of
the products. In contrast, our algorithm successfully scales to larger instances
within a reasonable time for model checking. We are aware of a more efficient
iterative version of the PRISM-UBA algorithm proposed in [5, Section 8.1]. We
believe that a similar iterative optimisation could be applied to our algorithm
as well, which we leave for future work.

5.2 Additional Benchmarks

Here we consider benchmarks from [5] and report whether the GfG minimisation
step reduces the size of automata, since reduction in the number of states in the
input UBA accelerates the subsequent model-checking procedure.

Complete and Nearly-complete UBAs. First, we consider the two fam-
ilies of parametrised UBAs, the complete and the nearly-complete UBAs bench-



Accelerating Markov Chain Model Checking 19

marks, from [5, Section 8.2]. Our minimisation algorithm usually achieves a
significant reduction in the number of states, often cutting the state count by
more than half. The following table compares the sizes of UBAs and the GfG
automata, where k is a parameter for the two families of UBAs.

Complete UBAs Nearly-complete UBAs
k UBA GfG ttr k UBA GfG ttr
5 193 96 0.121 s 5 193 94 0.122 s
6 449 192 0.126 s 6 449 190 0.126 s
7 1025 384 0.215 s 7 1025 382 0.251 s
8 2305 768 1.119 s 8 2305 766 1.070 s
9 5121 1536 8.160 s 9 5121 1534 8.179 s

LTL Specifications for Bounded Retransmission Protocol. Next,
we consider the two LTL properties described in [5, Section 8.3] for the
bounded retransmission protocol (BRP) model in the PRISM benchmark
suite [23]. BRP concerns a single message transmission and retrying for a
bounded number of times in case of an error. The first formula is φk =
(¬ack received)U retransmit ∧ (¬ack received U=k ack received), where aU=k b
stands for a ∧ ¬b ∧ ⃝(a ∧ ¬b) ∧ · · · ∧ ⃝k−1(a ∧ ¬b) ∧ ⃝kb. φk ensures that
the message was retransmitted k steps before acknowledgement. The second
formula is ψk = (msg send → (ack send ∧ ♢≤kack received)), where ♢≤k de-
notes a ∨ ⃝(a ∨ ⃝(· · · ∨ ⃝a)) (repeated k times). ψk ensures that for every
message sent, the receiver of the message sends an acknowledgement, and this
acknowledgement is received within the next k steps.

For both benchmarks, using Spot 2.12.1 (the version used for our experi-
ments), we observed that after some value of k, the generated UBAs were very
large, whereas the GfG automata obtained from our minimisation step were sig-
nificantly smaller. For example, for k = 14 in the first LTL family, the UBA
produced by Spot 2.12.1 had 6,147 states on our macOS machine whereas our
tool obtained GfG with only 16 states. For k = 12 in the second LTL family, the
UBA had 8,452 states, while our tool obtained a GfG automaton with 159 states
within a few seconds. Thus, the advantage of our model-checking algorithm over
[5] becomes clear when the UBAs are significantly reduced after some value of
k. In fact, the first BRP LTL formulas define a classic family of languages where
DBAs can be exponentially larger than the corresponding UBAs where mini-
mal UBAs for k should have k+2 states. Our minimisation approach for k = 14
gives GfG automaton with 16 (i.e. k+2) states, matching the size of the minimal
UBA. We note that [5] used Spot 2.7, and also reported that the UBA had size
16 for k = 14. This then demonstrates that our algorithm is not only effective
but also more robust across different tool choices.

6 Conclusion

We have synergised two recent advancements in the efficient verification of
Markov chains: facilitating unambiguous Büchi automata and minimising GfG-
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NCAs [1]. These two classes of automata are very surprising candidates for ob-
taining synergistic effects, because they generalise deterministic automata in
very different ways. Unambiguous automata guarantee the uniqueness of an ac-
cepting run, which has been at the heart of the approach to use them in model
checking Markov chains [5]. Broadly speaking, it allows for not resolving the
nondeterminism and to still measure the accepting paths. This heavily relies on
two things: one is that this is the only nondeterminism to consider (which is
why it does not work for MDPs), and the other is that the path to acceptance
is narrow, allowing for only a single accepting run of the automaton on every
word of the Markov chain in the target language.

It is fair to say that GfG nondeterminism is the polar opposite. It needs to be
resolvable on-the-fly and we need to choose between transitions to various lan-
guage equivalent states. Locally—i.e., on any finite prefix of a run—all of these
transitions can be taken; broadly speaking, one could say that it depends on the
path to acceptance being broad: having infinitely many accepting runs for a word
is the norm. To justify the term polar opposite further, these two restrictions
of nondeterminism are mutually exclusive ways to generalise deterministic au-
tomata in that unambiguous GfG automata are essentially deterministic (cf. [6]).

The second big difference between these classes is that UBAs recognise all
ω-regular languages, while GfG-NCA can only recognise co-Büchi languages.
We have shown that these concepts can nevertheless be brought together in an
intricate construction, where the nondeterminism of the automaton is resolved
randomly. When interpreting the probabilistic transitions as nondeterministic,
the resulting PA is not guaranteed to be unambiguous. Yet, the resulting prob-
abilities can be used in MCMC and retain the full expressive power of UBAs.

This allows us to reduce the state space of a UBA in polynomial time, where
the target is not normally a UBA, and the optimisation step minimises a DCA
as a GfG-NCA, an exponentially more succinct automata class [22]. We believe
that our algorithm can further speed up model checking against LTL [12,5], LDL
and weak alternating automata [24], and UBAs in general, especially when the
input LMCs are large, as is often the case with real-world models.
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A Missing proofs in Section 3

Lemma 1. Let P be a 0/1-PA.

(1) For any a ∈ Σ, q ∈ Q and q1, q2 ∈ δ(q, a), we have L(Pq1) = L(Pq2).
(2) Let P ′ be the PA obtained by negating the acceptance condition. Then P ′ is

also a 0/1-PA. Moreover, L(P ′) = L(P).

Proof. (1) Claim. For u ∈ Σ∗, w ∈ Σω and q ∈ δ(q0, u), we have PrPq (w) = 1
if uw ∈ L and PrPq (w) = 0 if uw /∈ L.
First, for a word aw ∈ Σω, we have PrPq (aw) =∑

q′∈δ(q,a) δ(q, a)(q
′)PrPq′ (w). So clearly, if PrPq (aw) = 0, then

PrPq′ (w) = 0 for all q′ ∈ δ(q, a). We now prove the case when PrPq (aw) = 1.
Assume by contradiction that for some successor q′ ∈ δ(q, a), we have
PrPq′ (w) < 1. Then clearly, PrPq (aw) =

∑
q′∈δ(q,a) δ(q, a)(q

′)PrPq′ (w) < 1,
leading to contradiction. The claim then holds.
The following claim can then be proved by repeatedly applying the first
claim from the initial state q0. This completes the proof of item (1) of the
lemma.

Claim. For a ∈ Σ and w ∈ Σω, if PrPq (a · w) = 1, then PrPq′ (w) = 1 and
if PrPq (a · w) = 0, then PrPq′ (w) = 0 for all q′ ∈ δ(q, a).

(2) Let ϕ be the acceptance condition. Let w ∈ Σω and Πw be the set of runs
in P over w. Let Πw

acc be the set of accepting runs and Πw
rej be the set

of rejecting runs. That is, for every run ρ ∈ Πw
acc, we have ρ |= ϕ and

for every run ρ ∈ Πw
rej , we have ρ ̸|= ϕ. Clearly Πw = Πw

acc ∪ Πw
rej and

Πw
acc∩Πw

rej = ∅. If w ∈ L(P), it means that PrP(Π
w
acc) = 1 = 1−PrP(Πw

rej).
Then, PrP(Π

w
rej) = 0. If we negate the acceptance condition, we know that
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in the automaton P with the same structure and acceptance condition ¬ϕ,
an accepting run ρ satisfies that ρ |= ¬ϕ. Hence, PrP(w) = PrP(Π

w
rej) = 0.

Similarly, if w /∈ L(P), we have PrP(Π
w
rej) = 1− PrP(Π

w
acc) = 1. This then

entails that PrP(w) = PrP(Π
w
rej) = 1.

It then follows that L(P) = Σω \ L(P). ⊓⊔

Proposition 2. Let M be an LMC, and P be a 0/1-PA recognising the DBA
language L. Then Prs(L(Pq)) = χ(⟨qs⟩) for all ⟨qs⟩ ∈ Q × S. In particular,
PrM(L) = PrM×P(♢K) where K is the set of all states in the accepting BSCCs
of P ×M.

Proof. Let x(⟨qs⟩) = Prs(L(Pq)) for all s ∈ S and q ∈ Q. It suffices to show
that x is a solution of Eq. (1).

We abuse the probability function δ as a transition function such that q′ ∈
δ(q, a) if δ(q, a)(q′) > 0.

For a product state ⟨ps⟩ in an accepting (resp. rejecting) BSCC, we have
x(⟨ps⟩) = 1 (resp. x(⟨ps⟩) = 0). We prove this via a DBA D which accepts
the language L, that is, L(D) = L. Consider the product of P × M × D in

which a transition ⟨psq⟩ a−→ ⟨p′s′q′⟩ is an α-transition if and only if q
a−→ q′ is an

α-transition in D.
We make the following observations: (1) the BSCCs in P ×M×D project

onto BSCCs in P ×M when the D component is omitted; (2) for each BSCC in
P ×M, there exists at least one BSCC in P ×M×D that projects down to it;
(3) for all states ⟨psq⟩ in P ×M×D, we have L(Pp) = L(Dq); (4) for a state
⟨psq⟩ in an accepting (resp. rejecting) BSCC of P×M×D, we have x(⟨ps⟩) = 1
(resp. x(⟨ps⟩) = 0). It remains to show that an accepting (resp. rejecting) BSCC
in P ×M×D corresponds to an accepting (resp. rejecting) BSCC in P ×M.

It is easy to see that if ⟨psq⟩ a−→ ⟨p′s′q′⟩ is an α-transition in a BSCC of
P ×M×D, then there must be an α-transition in the corresponding BSCC of
P ×M, since we have L(Pp) = L(Dq). If there are no α-transitions in a BSCC
of P ×M×D, there should be no α-transitions in the corresponding BSCC of
P×M. Assume for contradiction that ⟨ps⟩ a−→ ⟨p′s′⟩ is an α-transition in P×M.

Since it is a rejecting BSCC in P × M × D, the transition ⟨psq⟩ a−→ ⟨p′s′q′⟩ is
not an α-transition, moreover, all paths (words) generated by the LMC from
state s are rejected by Dq. However, we have a word w generated from state s
that is accepted by Pp since ⟨ps⟩ a−→ ⟨p′s′⟩ is an α-transition, contradicting that
L(Pp) = L(Dq).

Next, we show that x = B⊗x. We have:

x(⟨qs⟩) = Prs(L(Pq))

=
∑
a∈Σ

M(a)(s, s′) · Prs′(
⋃

q′∈δ(q,a)

L(Pq′))

=
∑
a∈Σ

M(a)(s, s′) · Prs′(L(Pq′))

[P is semantically deterministic and q′ is any a-successor of q]
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=
∑
a∈Σ

M(a)(s, s′) ·
∑

q′∈δ(q,a)

δ(q, a)(q′)Prs′(L(Pq′))

[
∑

q′∈δ(q,a) δ(q, a)(q
′) = 1 and P is semantically deterministic]

=
∑
a∈Σ

∑
q′∈δ(q,a)

M(a)(s, s′) · δ(q, a)(q′) · Prs′(L(Pq′))

=
∑
a∈Σ

∑
q′∈δ(q,a)

δ⊗(⟨qs⟩, a)(⟨q′s′⟩) · Prs′(L(Pq′))

=
∑

⟨q′s′⟩∈Q×S

B⊗(⟨qs⟩, ⟨q′s′⟩) · Prs′(L(Pq′))

=
∑

⟨q′s′⟩∈Q×S

B⊗(⟨qs⟩, ⟨q′s′⟩) · x(⟨q′s′⟩).

⊓⊔

Lemma 3. Let G be an NCA that is semantically deterministic and safe deter-
ministic and let R be a uniform stochastic resolver for G. Then, the PA G × R
with Büchi acceptance condition is a 0/1-PA. Also, L(G ×R) = L(D).

Proof. Let G = (Σ,Q, δ, q0, α). Let R be a uniform stochastic resolver for G,
that is, R(q, a)(q′) = 1

|δG(q,a)| for all q ∈ QG , a ∈ Σ and q′ ∈ δG(q, a). Now,

we will prove that G × R is a 0/1-PA for L(D) if we regard α-transitions as
accepting under Büchi condition. Now we need to prove that PrG×R(w) = 1 for
each w ∈ L(D) and PrG×R(w) = 0 for each w ∈ L(G) = L(C).

In the following, we do not distinguish the run of a word in G ×R and G as
they have one to one correspondence. If w ∈ L(D), i.e., w /∈ L(G), there is no run
in G over w that gets trapped in a safe component. Hence, every run ρ of G over
w will visit α-transitions infinitely often, i.e., every run ρ is accepting in G ×R.
Clearly PrG×R(w) = PrwG×R({π : π is an accepting run over w}) = PrwG×R({π :
π is a run over w}) = 1.

Now for a word w /∈ L(D), i.e w ∈ L(G), assume by contradiction that the
probability measure of accepting runs of w in G × R is greater than 0. This
means that there is a state q and w = uw′ for some u ∈ Σ∗, w′ ∈ Σω such that
q ∈ δ(q0, u) and the probability measure of accepting runs of w′ from q in G ×R
is 1. But then, since G is semantically deterministic and w ∈ L(G), it can be
shown by induction that for any prefix u′ of w, any q′ ∈ δ(q0, u

′), w must have
a continuation of run from q′ to a safe component. Hence we must be able to
find a finite run from q that leads to a deterministic safe component. This then
entails that there is a positive probability, say ℓ, from q to a deterministic safe
component, i.e., the probability measure of rejecting runs of w′ in G × R from
q is greater than 0. This contradicts with the fact that the probability measure
of accepting runs of w′ from q is 1. Hence, the probability measure of accepting
runs over w is not greater than 0. That is, we have PrG×R(w) = 0 for each word
w /∈ L(D). Hence this shows that G ×R is a 0/1 PA and L(D) = L(G ×R). ⊓⊔
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B Missing proofs in Section 4

U
×
M

D
×
W

C
×
W

G
×
W

P
×
W

B⊗

determinised by using Σ′

to a weighted graph on Σ′

read as

co-Büchi

minimise

GfG-NCA

randomise

transitions
project

back to Σ

G ×W ×R B⊗′
read as Büchi

and project back to Σ

product with a good and
fair GfG resolver R

(Appendix B.1)

correspondence between
MCCs above and SCCs below
(Appendix B.3)

cuts correspondence
(Appendix B.4)

Correctness Proofs Only

Fig. 3: The input U is a UBA with state space Q and alphabet Σ. The input LMC M
also has the alphabet Σ. The steps in the algorithm or proof are represented by solid
arrows, while correspondences between objects in the algorithm and proof are denoted
with dashed arrows. A green arrow indicates a potential exponential state space re-
duction, whereas a red arrow signifies a significant blow-up (greater than exponential).
However, this blow-up only occurs within the proof, not within the algorithm itself.

Below, we outline the main ideas, with the full proof presented later.
For qualitative model checking, U accepts a random word generated by M

with positive probability if and only if a positive SCC exists in B⊗′ . As shown
in Fig. 3, the upper row outlines our workflow, with the proof provided below it.
We establish Proposition 12 and Proposition 13 by proving that the existence of
a positive MCC in P ×W corresponds to a positive SCC in B⊗′ , and vice versa.

For quantitative model checking, the exact probabilities are determined by
solving a linear equation system similar to Eq. (2), using the underlying matrix
of B⊗′ and replacing MCCs of P ×W with SCCs of B⊗′ .

The algorithm relies on the observation that an SCC of B⊗′ is positive if
and only if it contains a cut—a set of states whose associated probabilities sum
to one. As shown in [5], such a cut for a positive SCC can be computed in
polynomial time and even in NC. We prove Lemma 14 by demonstrating that
for a positive MCC in P ×W, we can compute a set K corresponding to a cut
K ′ for the associated positive SCC in B⊗′ .

Given the large size (more than exponential) of the good and fair resolver
R, we construct and analyse the product B⊗′ only within the proof to ensure
correctness for the product P ×W.

Proposition 11. Let M be an LMC and U be a UBA. The vector χ satisfies
x = B⊗x.

Proof. We have:

χ(⟨qs⟩) (3)



Accelerating Markov Chain Model Checking 27

=
∑
a∈Σ′

∑
⟨q′s′⟩∈δ⊗(⟨qs⟩,a)

1

|δG(q, a)|
·W (a)(s, s′)χ(⟨q′s′⟩) [Lemma 8]

=
∑

⟨q′s′⟩∈Q×S

B⊗(⟨qs⟩, ⟨q′s′⟩) · χ(⟨q′s′⟩).

⊓⊔

B.1 Existence of a good and fair resolver for G × W

We denote by f(w) the run ρf induced by the strategy function f on w ∈ Σω.
Note that deterministic automata are trivially GfG with the strategy function
f(u) = δ(q0, u) for u ∈ Σ∗.

A run of the resolver R = (M,m0, g) over an ω-word w = a0a1 · · · , de-
noted as R(w), is a sequence of pairs of memory states and input states
(m0, q0)(m1, q1) · · · such that for all i ≥ 0, qi+1 ∈ δ(qi, ai) and g(mi, qi, ai) =
(mi+1, qi+1). We denote by R(w)|Q the sequence obtained from R(w) by pro-
jecting away the memory states. We say R a good resolver of A, if for every
accepting word w ∈ L(A), the run R(w)|Q is accepted by A. In order to con-
struct R, we will make use of an anytime restart resolver RG = (MG ,m0,G , gG)
of G. We say RG is an anytime restart resolver of G if it is a good resolver of
G and given current memory state m and an automaton state p ∈ QG , RG can
restart from a state q ∈ QG with q ∼G p. That is, RG can obtain a run for a
word w ∈ L(Gp) that visits α-transitions finitely often from every state q and
the memory state m if p ∼G q. The construction of such an anytime restart
resolver for G can be found in Lemma 22. The core behaviour of our anytime
restart resolver is otherwise fairly standard: if the run that is safe of the longest
moves to state q, it moves to a state q′ whose safe language includes the safe
language of q (“safe deterministic” is used to identify q while “immediately safe”
guarantees the existence of q′). Our model checking algorithm will make use of
the following results.

Theorem 18 ([1]). Given a GfG-NCA A, there is a polynomial-time algo-
rithm to compute a minimal GfG-NCA A′ with L(A′) = L(A). Moreover, A′ is
semantically deterministic, safe deterministic, and immediately safe.

Definition 19. Let R = (M,m0, g) be a resolver for G ×W.

– We say that a resolver R is good for G×W if, for every word w ∈ L(G) that
is generated by W, the run of G×W×R on w visits an αG×W×R-transition
only finitely often.

– We say R is a fair resolver of G ×W if, for every ω-word w = a0a1 · · · , if
a transition (⟨qsm⟩, a, ⟨q′s′m′⟩) ∈ ∆G×W×R has been visited infinitely often
in the run on w, then, for all the transitions (⟨qs⟩, a, ⟨q′′s′⟩) ∈ ∆G×W , some
transition (⟨qsm′′⟩, a, ⟨q′′s′m′′′⟩) ∈ ∆G×W×R must be visited infinitely often
as well.
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We describe the main idea how to obtain a good and fair resolver of G×W. We
assume that we already have an anytime restart resolver RG = (MG ,m0,G , gG) of
G. We can construct R by trying to visit all successors for every state p of G and
transition (s, a, s′) of W in a round-robin manner, and then following a good
choice made by RG . The round-robin traversal guarantees the fairness among
all successors, but does not necessarily give a good resolver. Therefore, we also
need to make some reasonable choices by following RG after the round-robin
traversal. The intuition is that, for semantically deterministic, safe deterministic
and immediately safe GfG-NCA, it is fine to make bad choices and to restart
for finitely many times as long as the right choice is eventually made. As G is a
safe deterministic co-Büchi automaton, an accepting run will eventually enter a
deterministic safe component without any α-transitions.

Lemma 20. There exists a good and fair resolver R for the product G ×W.

Proof. We now formally define the resolver R = (M,m0, g) where M,m0 ∈ M
and g : M×QG×W ×∆W 7→ M×QG×W are the components described as before.
A memory state m = (f, (mG , qG)) ∈ M consists of a map f : QG × ∆W 7→
QG ∪ {◦,+} memorising the last successor we visit in G, and the current config-
uration (mG , qG) of the anytime restart resolver RG over the current input word
generated by W. Here ◦ indicates that we have finished the current round-robin
traversal, while + means that we should start the next round-robin traversal.

LetQG = {q1, · · · , q|QG |} be the set of states in G. For a round-robin traversal,
we now assume the states will be ordered according to their index numbers. That
is, state qi is smaller than state qj if i < j. Therefore, for a state p ∈ QG and
a ∈ Σ′, we let S< = d1 · · · dℓ be the ordered sequence of states of S = δG(p, a).
We define nextSucc(p, a, dh) = dh+1 if 1 ≤ h < ℓ, nextSucc(p, a, dℓ) = ◦ and
nextSucc(p, a,+) = d1.

Initially, we let m0 = (f0, (m0,G , q0G)) where f0(q, (s, a, s
′)) = + for all

(s, a, s′) ∈ ∆W and q ∈ QG . For a given memory state m = (f, (mG , qG)), cur-
rent product state ⟨qs⟩ and transition (s, a, s′) ∈ ∆W , we define (m′, ⟨q′s′⟩) =
g(m, ⟨qs⟩, (s, a, s′)) with m′ = (f ′, (m′

G , q
′
G) as follows.

1. (m′
G , q

′
G) = gG(mG , qG). That is, we keep track of the last QG-state the any-

time restart resolverRG of G, in order to make good choices for the successors
in future.

2. If δᾱG (q, a) is defined or |δαG (q, a)| = 1, we have q′ = δG(q, a) because this is
the only way to follow the transition of G. Since G is safe deterministic, we
know that |δᾱ(q, a) = 1| for all q ∈ Q and a ∈ Σ′. We also let f ′ = f .

3. Otherwise |δαG (q, a)| ≥ 2. Let S = δG(q, a) and d = f(q, (s, a, s′)).
– If d ̸= ◦, it means that we have not yet finished the current round-

robin traversal of the successors in S. So, we let q′ = nextSucc(q, a, d)
and define f ′ = f [(q, (s, a, s′)) 7→ q′] by only updating the most recent
successor of (q, (s, a, s′)) to q′ in f .

– If d = ◦, it means that we just finished the round-robin traversal and we
need to make a good choice of successors now. Since RG is an anytime
restart resolver, we are able to eventually choose a good successor q′′ ∈



Accelerating Markov Chain Model Checking 29

δα(q, a) such that R is able to produce an accepting run of G over any
suffix w ∈ L(Gq′G ). That is, if RG produces an accepting run from q′G , it
can generate an accepting run from q′′ as well. The intuition is that since
G is semantically deterministic and qG ∼G q, this entails that q′G ∼G p′

for all p′ ∈ δα(q, a). Because RG is an anytime restart resolver of G, so
it is able to select a good successor q′′ ∈ δα(q, a). We then let q′ = q′′

and define f ′ = f [(q, (s, a, s′)) 7→ +], indicating we are ready to start
another round-robin traversal for q and (s, a, s′).

It is easy to see that R is a fair resolver for G ×W. This is because if a prod-
uct state ⟨qs⟩ and transition (s, a, s′) ∈ ∆W are visited infinitely often along
the run induced by R, i.e., some (⟨qsm⟩, a, ⟨q′s′m′⟩) is visited infinitely often,
by definition, all a-successors of q paired with s′ will be visited in a round-
robin manner for infinitely many times as well. That is, for all the transitions
(⟨qs⟩, a, ⟨q′′s′⟩) ∈ ∆G×W , some transition (⟨qsm′′⟩, a, ⟨q′′s′m′′′) ∈ ∆G×W×R
must be visited infinitely often as well.

Now we show that R is a good resolver for G ×W. For every accepting word
w = a0a1 · · · ∈ L(G) generated by W, RG can obviously produce an accepting
run ρG = q0,Gq1,G · · · of G over w, since RG is a good resolver for G. Let ρ =
q0q1 · · · be the sequence of QG-states induced from R(w) by projecting away the
memory states and the states from W. By recursively applying Proposition 21,
we have that qi ∼G qi,G for all i ≥ 0. Since RG is an anytime restart resolver and
qi+1 ∈ δG(qi, ai), ρ must be an accepting run of G as well. This in turn entails
that the run R(w)|QG×W will only visit ᾱG×W -transitions from some time point.
It follows that R(w)|QG×W is accepting in G × W (as a co-Büchi automaton).
Therefore, R is a good and fair resolver of G ×W. ⊓⊔

To complete the construction ofR, we now show how to construct an anytime
restart resolver RG for G. This construction only works when G is semantically
deterministic, safe deterministic and immediately safe. The intuition for con-
structing such a resolver is that over an input word w, we order the runs of G
over w by moving the runs that see ᾱ-transitions earlier to the left. An accepting
run of G (as a co-Büchi automaton) will eventually reach a time point after which
only ᾱ-transitions are visited. Therefore, an accepting run will either be moved
to the leftmost position or there must be other accepting runs which are further
left to it. Since G is safe deterministic, i.e., all ᾱ-transitions are deterministic,
then the number of runs which are further left to an accepting run will never
increase and eventually stabilise. The idea to choose a successor by RG for a
state q and letter a ∈ Σ′ is to choose the leftmost successor (i.e., run) among
all in δG(q, a) . This is because the leftmost run will have a better chance to be
accepting than their right counterparts.

Formally, the resolver RG = (MG ,m0,G , gG) will use a set of memory states

MG ⊆ Q
≤|QG |
G in which each memory state comprises of an ordered set of reach-

able states; the initial memory state is m0,G = q0G where q0G is the initial state
of G. We define the transition function gG : MG ×QG × Σ′ 7→ MG ×QG below.
Let current memory state of RG be mG = d1 · · · dℓ, current state be p, the input
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letter be a ∈ Σ′, let (m′
G , q

′) = gG(mG , q, a)
8. First, for each i ∈ {1, · · · , ℓ}, we

define d′i as

– ? if δᾱ(di, a) is not defined,
– ? if δᾱ(di, a) appears among d′1 · · · d′j for some j < i, and
– δᾱ(di, a) otherwise.

Note that G is safe deterministic according to Theorem 18. In other words, if
δᾱ(di, a) is defined, there must be only one successor. Intuitively, if a run has
continuation via ᾱ-transitions, then the run (encoded as its last state at the
current step) will remain in the left positions and no new runs can be moved to
its further left positions, as described in the third bullet point. When two runs
join in the same state as explained in the second bullet point, we only need to
keep the left run and cut off the other run. All runs that have been cut off will
be marked with ? symbol. Previously, we have considered the successors from
ᾱ-transitions; Now, we consider the successors from α-transitions.

Let d′′ = d′′1 · · · d′′k be the sequence of states obtained from d′1 · · · d′ℓ by re-
moving all ? symbols. Let S< = r1 · · · rh be the ordered sequence of states in
(
⋃

0≤i≤ℓ δ
α(di, a)) \ {d′′1 , · · · , d′′k}, which is the set of successors not appearing in

the previous computation. Intuitively, all the remaining runs that continue via
α-transitions will be ordered according to their last states at the current step.

Now we let m′
G = d′′ · r1 · · · rh and let q′ be the state that occurs in the

leftmost position in m′
G among states in δ(q, a). Note that here q can be any

state from mG , which is why RG can restart anytime since all states in mG are
equivalent. In fact, similar to [22], we use the Latest Appearance Record [7] of the
determinisation procedure of NCAs to organise the runs in the mG-component.
The memory state mG not only keeps track of the set of reachable states but also
prioritises the runs that are most likely to be accepting to the leftmost. Hence,
if there is an accepting run over the input word w, the run that consists of the
leftmost possible successors selected by RG from mG-sequence will be accepting
as well.

Proposition 21 ([1]). Let A be a semantically deterministic automaton, p, q ∈
Q, a ∈ Σ and transitions (p, a, p′), (q, a, q′) ∈ ∆A. If p ∼A q, then p′ ∼A q′.

Lemma 22. There exists an anytime restart resolver RG for G if G is seman-
tically deterministic, safe deterministic and immediately safe.

Proof. We now need to show why it is an anytime restart resolver. Let w =
a0a1 · · · ∈ L(G). Let ρ = q0q1 · · · is an accepting run of G over w. By recursively
applying Proposition 21, since G is semantically deterministic, for every i ≥ 0,
we have q′i ∼G qi for all states q′i in mi where RG(w) = (m0, q

′
0)(m1, q

′
1) · · ·

is the run of RG over w. Of course, qi also belongs to mi for all i ≥ 0 since
m0 = q0 and mi contains all reachable states in δ(q0, a0 · · · ai−1) if i > 0. Since
G is safe deterministic, an accepting run will eventually enter a deterministic

8 Note that for every current memory state mG = d1 · · · dℓ and state q, we always have
q = di for some 1 ≤ i ≤ ℓ.
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safe component. It follows that there exists some integer k > 0, such that wj =
ajaj+1 · · · ∈ Lsafe(Gqj ) for all j ≥ k. Further, since G is immediately safe, i.e.,
for every q′i in mi with i ≥ k, since wi+1 = ai+1ai+2 · · · ∈ Lsafe(Gqi+1), there is a

successor q′′i+1 ∈ δG(q
′
i, ai) such that Lsafe(Gqi+1) ⊆ Lsafe(Gq′′i+1). Therefore, after

the time point k, no matter what q′i is for i ≥ k (regardless the past choices),
the resolver RG just chooses the leftmost successor in δ(q′i, ai) all the time.
Since there must be a successor q′′i+1 ∈ δ(q′i, ai) such that wi+1 = ai+1ai+2 · · · ∈
Lsafe(Gq′′i+1), then there is an accepting run ρ′′i+1 from q′′i+1 that will never visit
α-transitions and only has one successor when reading the next letter. This run
q′i · ρ′′i+1 either will never move to the leftmost position among all runs from q′i,
which means that the chosen run by RG is already accepting; or, it eventually
moves to the leftmost position among the runs from q′i and will be always chosen
by RG afterwards. Either case will allow RG eventually be able to choose an
accepting run q′i+1q

′
i+2 · · · for wi+1 ∈ Lsafe(Gqi+1). Hence, RG is a good resolver.

Since RG is allowed to make finitely many bad choices and eventually make the
good choices of successors some point after k, we can replace any state q′j+1

with q′′j+1 ∈ mj+1 in the construction and RG is still able to restart from q′′j+1

and obtain an accepting run for a word aj+1aj+2 · · · ∈ L(Gq′j+1) from q′′j+1 since
q′j+1 ∼G q

′′
j+1. Therefore, RG is an anytime restart resolver. ⊓⊔

B.2 Product on the proof side

With the good and fair resolver from Appendix B.1 at hand, we are ready to
construct the product G ×W ×R over Σ′ and B⊗′ over Σ.

The product G × W × R over Σ′ is defined as
(Σ′, QG×W×R, δG×W×R, ⟨q0Gs0m0⟩,WG×W×R, αG×W×R) where

– QG×W×R = QG × S ×M is the set of product states,
– δG×W×R is the transition function for the product automaton such that

⟨q′s′m′⟩ ∈ δG×W×R(⟨qsm⟩, a) for some (s, a, s′) ∈ ∆W where (m′, ⟨q′s′⟩) =
g(m, ⟨qs⟩, (s, a, s′)),

– ⟨q0Gs0m0⟩ ∈ QG×W×R is the initial state of the product,
– WG×W×R : Σ′ 7→ RQG×W×R×QG×W×R is the weight function such

that WG×W×R(a)(⟨qsm⟩, ⟨q′s′m′⟩) = W (a)(s, s′) for all transitions
(⟨qsm⟩, a, ⟨q′s′m′⟩) ∈ ∆G×W×R, and

– αG×W×R = {(⟨qsm⟩, a, ⟨q′s′m′⟩) ∈ ∆G×W×R | (q, a, q′) ∈ αG} is the set of
α-transitions, where ∆G×W×R ⊆ QG×W×R × Σ′ × QG×W×R is the set of
transitions in G ×W ×R.

We project the alphabet down to Σ, and define the product WG over Σ as
B⊗′ = (Σ,Q⊗′ , δ⊗′ , ⟨q0Gs0m0⟩,W⊗′ , α⊗′) where

– Q⊗′ ⊆ QG × S ×M is the set of product states,
– δ⊗′ is the transition function for the product automaton such that ⟨q′s′m′⟩ ∈
δ⊗′(⟨qsm⟩, a) if there exist a′ with a = p−1(a′) and ⟨qsm⟩, ⟨q′s′m′⟩ ∈ Q⊗′

with (⟨qsm⟩, a′, ⟨q′s′m′⟩) ∈ ∆G×W×R,
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– ⟨q0Gs0m0⟩ ∈ Q⊗′ is the initial state of the product,
– W⊗′ : Σ 7→ RQ⊗′×Q⊗′ is the weight function such that
W⊗′(a)(⟨qsm⟩, ⟨q′s′m′⟩) =

∑
a′:p−1(a′)=aW (a′)(s, s′) for all

(⟨qsm⟩, a, ⟨q′s′m′⟩) ∈ ∆⊗′ , and
– α⊗′ = {(⟨qsm⟩, a, ⟨q′s′m′⟩) ∈ ∆⊗′ | (⟨qs⟩, a, ⟨q′s′⟩) ∈ α⊗} is the set of α-

transitions, where ∆⊗′ ⊆ Q⊗′ ×Σ ×Q⊗′ is the set of transitions in B⊗′ .

We write B⊗′ =
∑

a∈Σ W⊗′(a).

Lemma 23. B⊗′ is unambiguous and diamond-free.

Proof. We first prove unambiguity of B⊗′ . Let w = a0a1 . . . ∈ L(B⊗′) be an
ω-word. It suffices to show that there is a unique run in B⊗′ on w.

Let π = s0s1 . . . of the LMC M be the unique infinite path that produces
the word w.

We assume for contradiction that there are two different runs in B⊗′ on w:
ρ = ⟨q0s0m0⟩a0⟨q1s1m1⟩a1 . . . and ρ′ = ⟨q0s0m0⟩a0⟨q′1s1m′

1⟩ . . . of B⊗′ . Since ρ
and ρ′ are different, we can let k > 0 be the smallest integer such that qk ̸= q′k
or mk ̸= m′

k. This entails that in the product G × W × R over Σ′, we have
(⟨qk−1sk−1mk−1⟩, b1, ⟨qkskmk⟩) and (⟨qk−1sk−1mk−1⟩, b2, ⟨q′ksim′

k⟩) for different
letters b1, b2 ∈ Σ′, i.e., b1 ̸= b2. This is because by the construction of R (cf.
the proof of Lemma 20 in Appendix B.1), we know that R is deterministic,
s.t. b1 = b2 entails q′k = qk and mk = m′

k for a given qk−1 and a transition
(sk−1, b1, sk). This further gives that there are two words w1, w2 ∈ Σ′ω over
which their runs in G ×W ×R are the same as ρ and ρ′ except the letters on
the transitions, that is, we have w = p−1(w1) = p−1(w2). We have that there
are two accepting runs in G ×W ×R on w1 and w2, respectively. That is, these
two runs visit αG×W×R-transitions infinitely often, and it must be the case that
w1 /∈ L(G), and w2 /∈ L(G), since R is a good resolver.

Recall that L(D) = L(G) (overΣ′). It follows that w1 ∈ L(D) and w2 ∈ L(D).
Since w1 ̸= w2, we have two different accepting runs in the DBA D over the two
different words. Together with w = p−1(w1) = p−1(w2), this then gives two
different accepting runs of U over w since U and D are the same except the
letters on transitions, contradicting with the fact that U is a UBA.

Next, we show diamond-freeness of B⊗′ . Let w = a0a1 . . . an−1 ∈ Σ∗

be a finite word. Let π = s0s1 . . . sn of the LMC M be the unique finite
path that produces the word w. Similarly, we can prove B⊗′ is diamond-free
by assuming for contradiction that there is a diamond in B⊗′ for w, that
is, two different runs ρ = ⟨q0s0m0⟩a0⟨q1s1m1⟩a0 . . . an−1⟨qnsnmn⟩ and ρ′ =
⟨q0s0m0⟩a0⟨q′1s1m′

1⟩ . . . an−1⟨qnsnmn⟩ of B⊗′ . Since ρ and ρ′ are different, we
can let k > 0 be the smallest integer such that qk ̸= q′k or mk ̸= m′

k. This entails
that in the product G×W×R over Σ′, we have (⟨qk−1sk−1mk−1⟩, b1, ⟨qkskmk⟩)
and (⟨qk−1sk−1mk−1⟩, b2, ⟨q′ksim′

k⟩) for different letters b1, b2 ∈ Σ′, i.e., b1 ̸= b2.
This is because by the construction of R in the proof of Lemma 20, we know
that R is deterministic, i.e., b1 = b2 indicates q′k = qk and mk = m′

k for a given
qk−1 and a transition (sk−1, b1, sk). This further gives that there are two words
w1, w2 ∈ Σ′∗ over which their runs in G×W×R be the same as ρ and ρ′ except
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the letters on the transitions, that is, we have w = p−1(w1) = p−1(w2). We take
a word w′ ∈ Σ′ω in the language of the WG G×W×R starting from ⟨qnsnmn⟩.
Such a word exists because all states in B⊗′ have nonempty languages. We have
that there are two accepting runs in G ×W×R on w1w

′ and w2w
′, respectively.

That is, these two runs visit αG×W×R-transitions infinitely often, it must be the
case that w1w

′ /∈ L(G), and w2w
′ /∈ L(G), since R is a good resolver.

Recall that L(D) = L(G) (over Σ′). It follows that w1w
′ ∈ L(D) and w2w

′ ∈
L(D). Since w1 ̸= w2, we have two different accepting runs in the DBA D over
the two different words. Together with w = p−1(w1) = p−1(w2), this then gives
two different accepting runs of U over wp−1(w′) since U and D are the same
except the letters on transitions, contradicting with that U is a UBA. ⊓⊔

Define the vector ζ ∈ [0, 1]Q⊗′ by ζ(⟨qsm⟩) = Prs(L(B⟨qsm⟩
⊗′ )) where we read

the product B⊗′ as a Büchi automaton. As a direct consequence of the definitions
of the two vectors, ζ and χ, and the resolver R being good, we have:

Lemma 24. ζ(⟨qsm⟩) = χ(⟨qs⟩) for all ⟨qsm⟩ ∈ Q⊗′ . Furthermore, for all
q, q′ ∈ Q with q ∼G q

′, s ∈ S, and m,m′ ∈ M we have ζ(⟨qsm⟩) = ζ(⟨q′sm′⟩).

As a direct consequence of Lemma 24, we have ζ(q0) = ζ(⟨q0Gs0m0⟩) =
χ(⟨q0Gs0⟩) = χ(q′0) = PrM(L(U)), where q0 and q′0 are initial states of G×W×R
and P × W respectively. The following results on the SCCs of B⊗′ (thus, of
G × W × R) will be used for some proofs in the following. The results can be
found in [5]. Specifically, (1) is from the paragraph below [5, Proposition 7], (2)
and (3) are from [5, Lemma 8], and (4) is from [5, Proposition 13]. The spectral
radius of a matrix M ∈ RS×S , denoted ρ(M), is the largest absolute value of
the eigenvalues of M .

Proposition 25. Let (C ′, ∆C′) be an SCC in B⊗′ , then

(1) ρ(BC′,C′

⊗′ ) ≤ 1;

(2) if (C ′, ∆C′) is recurrent, that is, ρ
(
BC′,C′

⊗′

)
= 1, then BC′,C′

⊗′ ζC′ = ζC′ ;
(3) if (C ′, ∆C′) is recurrent, for all c ∈ C ′, we have ζ(c) > 0 iff (C ′, ∆C′) is

accepting;
(4) if (C ′, ∆C′) is recurrent and accepting, we have ζ(c) = 0 for all c /∈ C ′ that

is reachable from C ′.

Furthermore, by [5, Lemma 12], for the product B⊗′ , we have:

Theorem 26 ([5]). The vector ζ uniquely solves the following system of linear
equations:

z = B⊗′z

for all positive SCCs (C ′, E′) : µ⊺
C′zC′ = 1

[where µC′ is the cut vector for (C ′, E′)]

for all states c′ that cannot reach a positive SCC: z(c′) = 0. (4)

Moreover, ζ(q0) = PrM(L(U)) where q0 is the initial state of G ×W ×R.
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B.3 Qualitative model checking

Proposition 25 shows that PrM(L(U)) > 0 iff the product G × W × R has
a positive SCC. To prove that PrM(L(U)) > 0 iff the product P × W has a
positive MCC, it suffices to demonstrate that the existence of a positive SCC in
G ×W ×R implies the presence of a positive MCC in P ×W, and conversely.

Recall that ∆P×W (resp. ∆G×W×R) is the set of transitions in P ×W (resp.
G × W × R). We write free : QG × S × M → QG × S for the projection map
from states in G × W × R (or B⊗′) to states in P × W (or G × W and B⊗):
free(⟨qsm⟩) = ⟨qs⟩. We abuse the notation and write free

(
(⟨qsm⟩, a, ⟨q′s′m′⟩)

)
=

(⟨qs⟩, a, ⟨q′s′⟩). We extend free to C ⊆ QG ×S×M and to ∆ ⊆ ∆G×W×R in the
obvious manner.

We also introduce an arbitrary (but fixed) finest total preorder (tpo) ⪯ on
the states of G × W × R that reflects their reachability relation. This means
that we require the tpo to satisfy that, if ⟨qsm⟩ is reachable from ⟨q′s′m′⟩, then
⟨q′s′m′⟩ ⪯ ⟨qsm⟩ holds. Finest simply means that ⟨qsm⟩ ≃ ⟨q′s′m′⟩ holds if,
and only if, ⟨qsm⟩ and ⟨q′s′m′⟩ are in the same SCC. Note that for two states
that cannot reach each other, one must be strictly greater than the other with
respect to ⪯.

In the following, we first relate SCCs of G×W×R and the closed components
of P ×W.

Lemma 27. If (C ′, ∆C′) is an SCC in the graph of G×W×R, then (C,∆C) =
(free(C ′), free(∆C′)) in P ×W is a closed component.

Proof. Let (C ′, ∆C′) be an SCC in G × W × R. Let C = free(C ′) and ∆C =
free(∆C′), the projection of C ′ and ∆C′ in P × W. The component (C,∆C)
induced by C and ∆C is clearly strongly connected, and we have to show that
it is closed in P ×W.

We assume for contradiction that the component (C,∆C) is not closed. Then
there exist ⟨qs⟩, ⟨q1s′⟩, ⟨q2s′⟩ ∈ QG × S and a ∈ Σ′ such that

(
⟨qs⟩, a, ⟨q1s′⟩

)
∈

∆C ,
(
⟨qs⟩, a, ⟨q1s′⟩

)
,
(
⟨qs⟩, a, ⟨q2s′⟩

)
∈ ∆P×W , but

(
⟨qs⟩, a, ⟨q2s′⟩

)
̸∈ ∆C . That

is, the transition
(
⟨qs⟩, a, ⟨q2s′⟩

)
exits the component (C,∆C).

Since
(
⟨qs⟩, a, ⟨q1s′⟩

)
∈ ∆C , there must be some memory states m,m1 ∈ M

such that
(
⟨qsm⟩, a, ⟨q1s′m1⟩

)
is in the SCC C ′, and there must be a path in

(C ′, ∆C′) from ⟨qsm⟩ back to itself that starts with this transition. Since R is
a fair resolver of G × W, by Definition 19, this loop in (C ′, ∆C′)—and indeed
every loop that contains the transition

(
⟨qsm⟩, a, ⟨q1s′m1⟩

)
—must also contain

a transition
(
⟨qsm′⟩, a, ⟨q2s′m2⟩

)
, which implies

(
⟨qs⟩, a, ⟨q2s′⟩

)
∈ ∆C by its

definition. We then have the desired contradiction. ⊓⊔

We now establish an inverse projection from MCCs in P × W to SCCs of
G ×W ×R.

Lemma 28. Let (C,∆C) be an MCC in P × W, CR =
{⟨qsm⟩ ∈ QG×W×R | ⟨qs⟩ ∈ C} the set of states that project to C, ⟨p0s0m0⟩ a
maximally ordered state of CR with respect to ⪯. Then there is an SCC (C ′, ∆C′)
in G ×W ×R with ⟨p0s0m0⟩ ∈ C ′ such that (free

(
C ′), free(∆C′)

)
= (C,∆C).



Accelerating Markov Chain Model Checking 35

Proof. We start with building a pair of states and transitions (C ′′, ∆C′′) in
G ×W ×R according to the following rules:

1. ⟨p0s0m0⟩ ∈ C ′′;
2. if (⟨psm⟩, a, ⟨p′s′m′⟩) ∈ ∆C′′ , then ⟨p′s′m′⟩ ∈ C ′′;
3. if ⟨psm⟩ ∈ C ′′, (⟨ps⟩, a, ⟨p′s′⟩) ∈ ∆C is an αG×W -transition in G × W,

and (⟨psm⟩, a, ⟨p′s′m′⟩) is an αG×W×R-transition in G × W × R, then
(⟨psm⟩, a, ⟨p′s′m′⟩) is an αG×W×R-transition in ∆C′′ , and

4. if ⟨psm⟩ ∈ C ′′, (⟨psm⟩, a, ⟨p′s′m′⟩) is an αG×W×R-transition in G × W ×
R, and (⟨ps⟩, a, ⟨p′s′⟩) ∈ ∆C is an αG×W -transition in G × W, then
(⟨psm⟩, a, ⟨p′s′m′⟩) is an αG×W×R-transition in ∆C′′ .

Let (C ′′, ∆C′′) be the smallest such pair. We observe that (3) and (4) only
add outgoing transitions that project on ∆C , and (2) only adds states reachable
over those transitions, so that (free

(
C ′′), free(∆C′′)

)
is contained in (C,∆C) and

(C ′′, ∆C′′) is closed under successor as defined in (2), (3) and (4).
This also provides an argument that all states in C ′′ are not greater than

⟨p0s0m0⟩ in tpo ⪯ (as ⟨p0s0m0⟩ was chosen to be ⪯-maximal). At the same
time, as the construction only adds outgoing transitions in (3) and (4) and
states reachable from previously constructed states, there is a simple inductive
argument that all states are not smaller than ⟨p0s0m0⟩ with respect to the tpo
⪯.

With this in mind, we concurrently build two paths, one in (C,∆C) starting
from ⟨p0s0⟩, and one in (C ′′, ∆C′′), starting from ⟨p0s0m0⟩, namely:

ρC : ⟨p0s0⟩, a0, ⟨p1s1⟩, a1, ⟨p2s2⟩, a2, ⟨p3s3⟩, . . . , ⟨pnsn⟩ in (C,∆C) and
ρC′′ : ⟨p0s0m0⟩, a0, ⟨p1s1m1⟩, a1, ⟨p2s2m2⟩, a2, ⟨p3s3m3⟩, . . . , ⟨pnsnmn⟩ in G ×

W ×R.

The goal we pursue in ρC is to cover all states and transitions in (C,∆C). We
use ρC′′ to make sure that a path corresponding to ρC in G×W×R exists when
nondeterminism needs to be resolved. To construct the two paths, our strategy
is as follows: When we are in state ⟨pisi⟩ and have selected ai and si+1 in ρC ,
we use ρC′′ to determine the next state pi+1.

We first observe that the rules we used to build (C ′′, ∆C′′) ensure that the
finite path ρC′′ is entirely within (C ′′, ∆C′′).

This leaves the problem open how to make sure that (C,∆C) is covered. To
ensure this, we can simply select, when we come to a state ⟨pisi⟩ in the path ρC ,
a pair of ai and si+1 within (C,∆C) that has not been selected from this state
for the longest amount of time. We continue until all states and transitions in
(C,∆C) are covered. Our construction procedure will make sure that ρC covers
(C,∆C).

Following this strategy, we assume for contradiction that (C,∆C) is not cov-
ered by the path in ρC . Then the path in ρC never terminates, and it has an
infinity set (D,∆D) (those states and transitions that do occur infinitely often).
It follows that (D,∆D) is strictly smaller than (C,∆C).

Then there is a
(
⟨ps⟩, a, ⟨p′s′⟩

)
∈ ∆C \∆D with ⟨ps⟩ ∈ D. By the definition

of an infinity set, ⟨ps⟩ occurs infinitely often after the last (if any) occurrence of
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this transition, and therefore we then pick infinitely often the pair of a and s′.
Since R is a fair resolver, this leads to infinitely often selecting p′ when looking
at the path ρC′′ . This leads to a contradiction since p′ will be selected by ρC′′ .

We have already shown that all states in C ′′ are equivalent with respect
to ⪯, so that (C ′′, ∆C′′) is contained in some SCC (C ′, ∆C′) of G × W × R.
By Lemma 27, an SCC (C ′, ∆C′) projects on a closed component (E,∆E), so
(E,∆E) must contain the MCC (C,∆C), because the projection of (C ′′, ∆C′′)
already contains (C,∆C). By construction, the only closed component that con-
tains an MCC is the MCC itself, so that (C ′, ∆C′) projects onto (C,∆C). ⊓⊔

We also show that all ⪯-maximal SCCs of G×W×R project down to MCCs
of P ×W:

Proposition 29. If (C ′, ∆C′) in G × W × R is the corresponding ⪯-maximal
SCC of a closed component (C,∆C) in P×W, we have that (free(C ′), free(∆C′))
is an MCC.

Proof. It is easy to see that (free(C ′), free(∆C′)) is an closed component that
encloses (C,∆C). We assume for contradiction that (free(C ′), free(∆C′)) is not
maximal. Let (Cm, ∆Cm) be the MCC that encloses (free(C ′), free(∆C′)). We
distinguish two cases:

– If we are missing some states in free(C ′), that is, there exist states
⟨qs⟩ ∈ free(C ′) and ⟨q′s′⟩ /∈ free(C ′) such that there is a loop begins with
(⟨qs⟩, a, ⟨q′s′⟩ in (Cm, ∆Cm

). There should also be a transition from ⟨qsm⟩
in C ′ to ⟨q′s′m⟩ of another SCC. Then ⟨q′s′m⟩ can reach a state ⟨q′′s′′m′′⟩
where ⟨q′′s′′⟩ ∈ C, which contradicts that (C ′, ∆C′) is the ⪯-maximal SCC
of (C,∆C).

– Otherwise, we have free(C ′) = Cm and we are missing some transitions
(⟨qs⟩, a, ⟨q′s′⟩ for states ⟨qs⟩, ⟨q′s′⟩ ∈ free(C ′). This means for states ⟨qsm⟩
in C ′, an a-transition leads it to a state ⟨q′s′m′⟩ out of the SCC, which
contradicts that (C ′, ∆C′) is the ⪯-maximal SCC of (C,∆C) as ⟨q′s′m′⟩ can
reach a state ⟨q′′s′′m′′⟩ where ⟨q′′s′′⟩ ∈ C. ⊓⊔

The following can be easily obtained from [5]:

Proposition 30. For a state ⟨qsm⟩ of B⊗′ that cannot reach a positive SCC,
we have ζ(⟨qsm⟩) = 0.

Proof. For all SCCs (C ′, E′) in B⊗′ , we have ρ(BC′,C′

⊗′ ) ≤ 1 by (1) of Proposi-
tion 25. We distinguish two cases.

– If ⟨qsm⟩ is in a non-accepting recurrent SCC, then ζ(⟨qsm⟩) = 0 by (3) of
Proposition 25.

– Otherwise, ⟨qsm⟩ is in a non-recurrent SCC. Assume by contradiction that

ζ(⟨qsm⟩) > 0. Since ρ(BC′,C′

⊗′ ) < 1 and ζC′ is a nonnegative nonzero vector,

we have B
C′,Q⊗′

⊗′ ζ = ζC′ > BC′,C′

⊗′ ζC′ . This means that (C ′, E′) can reach
⟨q′s′m′⟩ of another SCC (C ′′, E′′) with ζ(⟨q′s′m′⟩) > 0. This SCC (C ′′, E′′)
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cannot be positive by assumption. It is also not non-accepting recurrent since
ζ(⟨q′s′m′⟩) > 0. Thus, this SCC (C ′′, E′′) again is non-recurrent. By similar
arguments, the non-recurrent SCC (C ′, E′) will reach an infinitely sequence
of non-accepting, non-recurrent SCCs which contradicts with the fact that
B⊗′ is finite. ⊓⊔

We define a new equivalence relation ≡ on Q⊗ such that c ≡ d if and only
if c and d can be reached simultaneously from some state by the same word
w ∈ Σ′ in P ×W. Let WP×W : Σ′ → RQ⊗×Q⊗ be the weight function of P ×W
such that WP×W(a)(⟨qs⟩, ⟨q′t⟩) = δP(q, a)(q

′) · W (a)(s, t) for all a ∈ Σ′ and
(q, a, q′) ∈ ∆G . We consider the transition matrix BP×W =

∑
a∈Σ′ WP×W(a).

Let W
(C,E)
P×W be the transition function restricted to the closed component (C,E)

and B
(C,E)
P×W =

∑
a∈Σ′ W

(C,E)
P×W (a) be the corresponding matrix restricted to the

closed component (C,E).

Lemma 31. Let (C ′, ∆C′) be an SCC of G ×W ×R and (C,∆C) =
(free(C ′), free(∆C′)) be a closed component in P × W. Let x be a nonnegative

solution to x = B
(C,∆C)
P×W x and x(c) = x(d) for all c, d ∈ C such that c ≡ d. Let

z be its projection on C ′, that is, z(⟨qsm⟩) = x(⟨qs⟩) for all ⟨qsm⟩ ∈ C ′. Then

we have z ≥ B
(C′,∆C′ )
G×W×Rz.

Proof. We consider the successors of ⟨qsm⟩ in (C ′, ∆C′), and note that, for every
successor ⟨q′s′m′⟩ in (C ′, ∆C′) reachable over an ᾱ-transition, ⟨q′s′⟩ is reachable
from ⟨qs⟩ over an ᾱ-transition in (C,∆C), and the probability entry is the same.

For every successor ⟨q′s′m′⟩ in (C ′, ∆C′) reachable over an α-transition with
probability p > 0, there are outgoing α-transitions to states ⟨ris′⟩ in (C,∆C),
such that, for all ri, we have that ri ∼ q′, and for some i, we have q′ = ri. The
closedness of (C,∆C) and the existence of this successor with ri = q′ entail that
all possible successors are included, which in turn implies that their probabilities
sum up to p. (Note that, for all of these successors ⟨ris′⟩, the entry in x is the
same as the entry for ⟨q′s′m′⟩ in z by Lemma 24.)

Since each state ⟨qs⟩ of (C,∆C) can map to several different states ⟨qsm⟩
of (C ′, ∆C′), this provides the inequality ≥ for an arbitrarily chosen entry, and
thus overall. ⊓⊔

Lemma 32. Let (C,∆C) be an MCC of P × W. Let (C ′, ∆C′) be the corre-
sponding ⪯-maximal SCC of G ×W ×R with (free(C ′), free(∆C′)) = (C,∆C).

Let x be a nonnegative solution to x = B
(C,∆C)
P×W x and x(c) = x(d) for all c, d ∈ C

such that c ≡ d. Let z be its projection on C ′, that is, z(⟨qsm⟩) = x(⟨qs⟩) for all

⟨qsm⟩ ∈ C ′. Then we have z ≤ B
(C′,∆C′ )
G×W×Rz.

Proof. We now consider the successors of ⟨qsm⟩ in (C ′′, ∆C′′), and note that the
construction of (C ′′, ∆C′′) implies that ⟨qs⟩ ∈ C. Moreover, for every successor
⟨q′s′⟩ in (C,∆C) reachable over an ᾱ-transition, the construction of (C ′′, ∆C′′)
guarantees that some state ⟨q′sm′⟩ is reachable from ⟨qsm⟩ over a similar ᾱ-
transition in (C ′′, ∆C′′)—and thus in (C ′, ∆C′)—and that the probability entry
is the same as for the transition from ⟨qs⟩ to ⟨q′s′⟩ in (C,∆C).
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For every successor ⟨q′s′m′⟩ in (C ′′, ∆C′′) reachable over an α-transition with
probability p > 0, the construction of (C ′′, ∆C′′) guarantees that there is an
outgoing α-transition to ⟨q′s′⟩ in (C,∆C). With the closedness of (C,∆C) we
also get that the probability of all successors in (C,∆C) that are reachable
over the similar α-transition in (C,∆C) add up to p. (Note that, for all of these
successors, the entry in x is the same as the entry for ⟨q′s′m′⟩ in z by Lemma 24.)

This provides the inequality ≤ for an arbitrarily chosen entry, and thus over-
all. ⊓⊔

An accepting SCC (C ′, E′) of G ×W ×R corresponds to an accepting SCC
(C ′,p−1(E′)) of B⊗′ , that is, an accepting SCC (C ′, E′) will not be pruned from
P × W, since all states in C ′ have words that can traverse infinitely many α-
transitions. Similarly, an accepting MCC (C,E) of P × W corresponds to an
accepting MCC (C,p−1(E)) of B⊗, that is, an accepting MCC (C,E) will not
be pruned from P ×W. The following proposition follows from Lemma 31 and
Lemma 32:

Proposition 33. Let (C,∆C) be an accepting MCC of P × W. Let
(C ′, ∆C′) be the corresponding accepting ⪯-maximal SCC of G ×W ×R with
(free(C ′), free(∆C′)) = (C,∆C). Let x be a nonnegative solution to x =

B
(C,∆C)
P×W x and x(c) = x(d) for all c, d ∈ C such that c ≡ d. Let z be its pro-

jection on C ′, that is, z(⟨qsm⟩) = x(⟨qs⟩) for all ⟨qsm⟩ ∈ C ′. Then we have

z = B
(C′,∆C′ )
G×W×Rz.

Proposition 34. Let (C,∆C) be an accepting MCC of P ×W. For all nonneg-
ative vectors x satisfying x(c) = x(d) for all c, d ∈ C such that c ≡ d, we have

B
(C,∆C)
P×W x ≤ x.

Proof. Let (C,∆C) be an MCC of P ×W. Let (C ′, ∆C′) be the corresponding
⪯-maximal SCC of G ×W ×R with (free(C ′), free(∆C′)) = (C,∆C). Let x be
a nonnegative vector satisfying x(c) = x(d) for all c, d ∈ C such that c ≡ d.

Assume for contradiction that B
(C,∆C)
P×W x > x. The vector x is then nonzero. Let

z be the projection of x on C ′, that is, z(⟨qsm⟩) = x(⟨qs⟩) for all ⟨qsm⟩ ∈ C ′. We

have B
(C′,∆C′ )
G×W×Rz > z. This could be shown, similar to Proposition 33 by arguing

the entry for each state ⟨qsm⟩ ∈ C ′. Since z is nonnegative and nonzero, this

means ρ(B
(C′,∆C′ )
G×W×R) = ρ(BC′,C′

G×W×R) > 1, which contradicts ρ(BC′,C′

G×W×R) ≤ 1 as
stated by (1) of Proposition 25. ⊓⊔

Proposition 35. There is a positive MCC (C,∆C) of P × W iff there
is a positive SCC (C ′, ∆C′) of G × W × R that projects to it, that is,(
free(C ′), free(∆C′)

)
= (C,∆C).

Proof. Let (C,∆C) be a positive MCC of P×W. Let (C ′, ∆C′) be the ⪯-maximal
SCC from Lemma 28 such that

(
free(C ′), free(∆C′)

)
= (C,∆C). Since (C,∆C)

is recurrent, there is a nonnegative and nonzero solution x to B
(C,∆C)
P×W x = x and

x(c) = x(d) for all c, d ∈ C such that c ≡ d.
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Let z be the projection of x on C ′, that is, z(⟨qsm⟩) = x(⟨qs⟩) for all
⟨qsm⟩ ∈ C ′. By Proposition 33, z is a nonnegative and nonzero solution to

z = B
(C′,∆C′ )
G×W×Rz. By (1) of Proposition 25, we have ρ(B

(C′,∆C′ )
G×W×R) = 1, that is,

(C ′, ∆C′) is recurrent. Thus, (C ′, ∆C′) is a positive SCC.
It remains to show that the existence of a positive SCC implies the existence

of a positive MCC. Assume that there is a positive SCC (C ′, ∆C′) of G×W×R.
Let (C,∆C) =

(
free(C ′), free(∆C′)

)
. We show that (C ′, ∆C′) must be a ⪯-

maximal SCC of (C,∆C). By (3) of Proposition 25, we have ζ(⟨qsm⟩) > 0 for
all ⟨qsm⟩ ∈ C ′. By [5, Proposition 13], ζ(⟨qsm⟩) = 0 for all ⟨qsm⟩ in the other
SCCs that are reachable from C ′. It follows from Lemma 24 that ⟨qs⟩ /∈ C for
all states ⟨qsm⟩ in the other SCCs that are reachable from C ′. Thus, (C ′, ∆C′)
is the corresponding ⪯-maximal SCC of (C,∆C).

By Proposition 29, (C,∆C) is an MCC. From (2) of Proposition 25, since

(C ′, ∆C′) is positive, we have B
(C′,∆C′ )
G×W×RζC′ = ζC′ . From (3) of Proposition 25,

we have ζ(⟨qsm⟩) > 0 for all ⟨qsm⟩ ∈ C ′. That is, ζC′ is strictly positive. The
vector χC is then strictly positive by Lemma 24. Since (C,∆C) is an MCC
and χ(⟨qs⟩) = χ(⟨q′s′⟩) for all ⟨qs⟩ ≡ ⟨q′s′⟩, from Proposition 34, we have

B
(C,∆C)
P×W χC ≤ χC . Moreover, we have χC = B

C,QP×W
P×W χ ≥ B

(C,∆C)
P×W χC . Thus,

B
(C,∆C)
P×W χC = χC . Along with (C,∆C) is accepting, we have (C,∆C) is a positive

MCC. ⊓⊔

Proposition 13 then follows from Proposition 25 and Proposition 35.
For a state ⟨qsm⟩ of B⊗′ that cannot reach a positive SCC, we have

ζ(⟨qsm⟩) = 0 by Proposition 30. Similarly, we have:

Proposition 12. For a state ⟨qs⟩ of P ×W that cannot reach a positive MCC,
we have χ(⟨qs⟩) = 0.

Proof. For a state ⟨qs⟩ of B⊗ that cannot reach a positive MCC, we consider
two cases: either there exists a corresponding ⟨qsm⟩ in B⊗′ or there does not. In
the former case, we have χ(⟨qs⟩) = 0 by Lemma 24 and Proposition 30. In the
latter case, we argue in the following that the values for such states are zero. As
a simple consequence of Proposition 35, for a state ⟨qs⟩ in P × W (thus, B⊗)

that can reach a positive MCC, we have χ(⟨qs⟩) > 0. Moreover, L(B⟨qsm⟩
⊗′ ) ̸= ∅;

hence, ⟨qsm⟩ will not be pruned from G×W×R. Conversely, if ⟨qsm⟩ is pruned
from G × W × R, that is, L(B⟨qsm⟩

⊗′ ) = ∅ and Prs(p
−1(L(Gq))) = 0, then ⟨qs⟩

in P ×W cannot reach a positive MCC. Thus, for a state ⟨qsm⟩ that is pruned
from G ×W ×R and ⟨qs⟩ not pruned from P ×W, we have χ(⟨qs⟩) = 0. ⊓⊔

B.4 Quantitative model checking

In the following, we describe the process for obtaining cut vectors for positive
MCCs and demonstrate that, with the inclusion of the additional equations, the
system (cf. Eq. (2)) has χ as its unique solution.

The following facts of the positive MCCs will help prove that Alg. 2 is a
polynomial algorithm that computes a cut.
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Lemma 36. For a positive MCC (C,E) of P ×W, we have B
(C,p−1(E))
⊗ χC =

χC .

Proof. Recall that χ = B⊗χ. Thus, χC = B
C,Q⊗
⊗ χ ≥ B

(C,p−1(E))
⊗ χC . Since

χ(c) = χ(d) for all c ≡ d, we have B
(C,E)
P×WχC ≤ χC by Proposition 34. Thus,

B
(C,E)
P×WχC = B

(C,p−1(E))
⊗ χC = χC . ⊓⊔

Lemma 37. Let (C,E) be a positive MCC of P ×W. Then χ(⟨qs⟩) > 0 for all
⟨qs⟩ ∈ C.

Proof. By Proposition 35, there is a corresponding positive SCC (C ′, E′) in
G ×W ×R that projects down to the MCC (C,E) of P ×W. By [5, Lemma 8.1],
we have ζ(⟨qsm⟩) > 0 for all ⟨qsm⟩ ∈ C ′. By Lemma 24, we have χ(⟨qs⟩) =
ζ(⟨qsm⟩) for all ⟨qsm⟩ ∈ Q⊗′ . ⊓⊔

Given a positive MCC (C,E) of P×W, we have that, like SCCs, the positive
MCC contains all transitions within C.

Lemma 38. For a positive MCC (C,E) of P×W, we have BC,C
⊗ = B

(C,p−1(E))
⊗ .

Proof. Let (C,E) be an MCC of P × W. We have BC,C
⊗ (⟨qs⟩, ⟨q′s′⟩) ≥

B
(C,p−1(E))
⊗ (⟨qs⟩, ⟨q′s′⟩) for all entries (⟨qs⟩, ⟨q′s′⟩) ∈ Q⊗×Q⊗ and B

(C,p−1(E))
⊗ =

B
(C,E)
P×W .

Assume (C,E) is positive. By Lemma 36, we have B
(C,E)
P×WχC = χC . By

Lemma 37, χC is strictly positive.

We then have BC,C
⊗ χC = BC,C

P×WχC ≥ B
(C,E)
P×WχC = χC . We also have

BC,C
⊗ χC ≤ B

C,Q⊗
⊗ χ = χC . This gives BC,C

⊗ χC = χC . As χC is strictly pos-

itive, we have BC,C
⊗ = B

(C,p−1(E))
⊗ . This completes the proof. ⊓⊔

Lemma 39. Let ⟨qs⟩, ⟨q′s⟩ be two states in the positive MCC (C,E) with
⟨qs⟩ ∼P×W ⟨q′s⟩. For all a′ ∈ Σ′ and all ⟨pt⟩ ∈ δCP×W(⟨qs⟩, a′), there exists
⟨p′t⟩ ∈ δCP×W(⟨q′s⟩, a′) with ⟨p′t⟩ ∼P×W ⟨pt⟩.

Proof. To prove this lemma, we will use the corresponding ⪯-maximal posi-
tive SCC (C ′, E′). There are states ⟨qsm⟩ and ⟨q′sm′⟩ in C ′. Since ⟨qs⟩ ∼P×W
⟨q′s⟩, we have ⟨qs⟩ ∼B⊗ ⟨q′s⟩. Let a′ ∈ Σ′ and assume there exists ⟨pt⟩ ∈
δCP×W(⟨qs⟩, a′). There is a state ⟨ptm′′⟩ = δC

′

G×W×R(⟨qsm⟩, a′), and ζ(⟨ptm′′⟩) >
0, by (3) of Proposition 25, since (C ′, E′) is a positive SCC. As ⟨qs⟩ ∼B⊗ ⟨q′s⟩,
we have L

(
(G ×W ×R)⟨qsm⟩) = L

(
(G ×W ×R)⟨q

′sm′⟩). There must be a state
⟨p′tm′′′⟩ = δG×W×R(⟨q′sm′⟩, a′) that has the same language as ⟨ptm′′⟩, meaning
ζ(⟨p′tm′′′⟩) = ζ(⟨ptm′′⟩) > 0. This state ⟨p′tm′′′⟩ must be inside C ′, because by
(4) of Proposition 25, ζ(⟨p′tm′′′⟩) = 0 if it is in a reachable SCC, which would
be a contradiction. Thus, we have ⟨p′t⟩ ∈ C and ⟨p′t⟩ ∈ δCP×W(⟨q′s⟩, a′). ⊓⊔

By applying Lemma 39 repeatedly, we have:
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Lemma 40. Let ⟨qs⟩, ⟨q′s⟩ be two states in the positive MCC (C,E) with
⟨qs⟩ ∼P×W ⟨q′s⟩. For all w′ ∈ Σ′∗, ⟨pt⟩ ∈ δCP×W(⟨qs⟩, w′) and ⟨p′t⟩ ∈
δCP×W(⟨q′s⟩, w′), we have ⟨pt⟩ ∼P×W ⟨p′t⟩.

Lemma 41. Let c1 ∼P×W c2. Then δ
C
⊗(c1, w)/∼P×W = δC⊗(c2, w)/∼P×W for all

w ∈ Σ∗.

Proof. Let c1 ∼P×W c2. Let w ∈ Σ∗ and w′ ∈ Σ′∗ with p−1(w′) = w. By
Lemma 40, we have d1 ∼P×W d2 for all d1 ∈ δCP×W(c1, w

′) and all ⟨d2⟩ ∈
δCP×W(c2, w

′). Thus, δCP×W(c1, w
′)/∼P×W = δCP×W(c2, w

′)/∼P×W and

δC⊗(c1, w)/∼P×W =
( ⋃

w′:p−1(w′)=w

δCP×W(c1, w
′)
)
/∼P×W

=
( ⋃

w′:p−1(w′)=w

δCP×W(c2, w
′)
)
/∼P×W = δC⊗(c2, w)/∼P×W⊓⊔

Since B⊗′ is unambiguous and diamond-free, all states of a cut of a positive
SCC (C ′, E′) of B⊗′ are language disjoint, thus, their projections to B⊗ are all
in different equivalence classes of ∼B⊗ . Let c

′ ∈ C ′ such that free(c′) = c. For an
arbitrary word w ∈ Σ∗, we will reach the same equivalence classes of ∼B⊗ when
we start with c′ ∈ C ′ and c ∈ C.

Lemma 42. Let c′ ∈ C ′ such that free(c′) = c. We have free
(
δC

′

⊗′ (c′, w)
)
⊆

δC⊗(c, w) and δ
C
⊗(c, w)/∼B⊗ = free

(
δC

′

⊗′ (c′, w)
)
/∼B⊗ for all w ∈ Σ∗.

Proof. Let c′ ∈ C ′ such that free(c′) = c. Let w ∈ Σ∗. It is easy to see that
free(δC

′

⊗′ (c′, w)) ⊆ δC⊗(c, w) since, by choice of the SCC C ′, for all w ∈ Σ∗ and

⟨qsm⟩ ∈ δC
′

⊗′ (c′, w) there is ⟨qs⟩ ∈ δC⊗(c, w). We have free(δC
′

⊗′ (c′, w)) ⊆ δC⊗(c, w).
We now consider the MCC (C,E) in the product of P ×W (over Σ′) and its

corresponding ⪯-maximal SCC C ′ in the product G ×W ×R (over Σ′). Recall
that δP×W and δG×W×R are the transition functions for P ×W and G ×W ×R
(over Σ′), respectively. Let w′ ∈ Σ′∗ such that p−1(w′) = w. Over the word w′,
for any state reached from c in the MCC (C,E) of P ×W, there is a state that
reached from c′ in the SCC C ′ of G ×W ×R that recognises the same language
over Σ′ and vice versa. It follows that

δCP×W(c, w′)/∼B⊗
= free

(
δC

′

G×W×R(c
′, w′)

)
/∼B⊗

. (5)

Thus, we have

δC⊗(c, w)/∼B⊗
=

( ⋃
p−1(w′)=w

δCP×W(c, w′)
)
/∼B⊗

=
( ⋃

p−1(w′)=w

free
(
δC

′

G×W×R(c
′, w′)

))
/∼B⊗

[Eq. (5)]

= free
( ⋃

p−1(w′)=w

δC
′

G×W×R(c
′, w′)

)
/∼B⊗



42 Yong Li, Soumyajit Paul, Sven Schewe, and Qiyi Tang

[swap free and the big union]

= free
(
δC

′

⊗′ (c′, w)
)
/∼B⊗

.⊓⊔

The following two lemmas, Lemma 43 and Lemma 44, ensure that Alg. 2
makes progress when the set δC⊗(c, w)/∼P×W is not a cut and guarantee termi-
nation.

Lemma 43. Suppose w ∈ Σ∗ is such that c ∈ δC⊗(c, w). If the set δ
C
⊗(c, w)/∼P×W

is not a cut, then there are v ∈ Σ∗ and d ̸∼P×W c with {c, d} ⊆ δC⊗(c, v) and
δC⊗(d,w) ̸= ∅.

Proof. By [5, Lemma 10], the positive SCC (C ′, E′) has a cut. Therefore, there
is v ∈ Σ∗ such that K ′ = δC

′

B⊗′ (c
′, v) ∋ c′ is a cut. Moreover, by Lemma 42,

we have free(K ′) ⊆ δC⊗(c, v), and δC⊗(c, v)/∼B⊗
is a cut. Since free(c′) = c, we

have c ∈ δC⊗(c, v). Since δC⊗(c, vw) ⊇ δC⊗(c, w), δ
C
⊗(c, vw)/∼B⊗

is also a cut.

Since δC⊗(c, vw)/∼B⊗
is a cut and δC⊗(c, w)/∼B⊗

is not, we have δC⊗(c, vw)/∼B⊗
⊋

δC⊗(c, w)/∼B⊗
.

Let v1 ∈ Σ′∗ be the word satisfying p−1(v1) = v and c ∈ δCP×W(c, v1).
Assume for contradiction that starting from the state c there are no other words
v′ ∈ Σ′∗ in (C,E) such that p−1(v′) = v. That is, δCP×W(c, v1) = δC⊗(c, v). For
all states d ∈ δC⊗(c, v), we have d ∼P×W c by definition of the relation ∼P×W ,
and δC⊗(c, w)/∼P×W = δC⊗(d,w)/∼P×W by Lemma 41. Thus, δC⊗(c, w)/∼B⊗

=

δC⊗(d,w)/∼B⊗
, and δC⊗(c, vw)/∼B⊗

= δC⊗(c, w)/∼B⊗
, which is a contradiction.

So there are v2 ∈ Σ′∗ in (C,E) such that v2 ̸= v1, p
−1(v1) = p−1(v2) = v.

By Lemma 8, for all v2 ̸= v1, the complement language of c and d where d is
any state in δCP×W(c, v2) are disjoint, that is, d ̸∼B⊗ c for all d ∈ δCP×W(c, v2). If
for all such v2 ∈ Σ′∗ in (C,E) we have δC⊗(d,w) = ∅ for all d ∈ δCP×W(c, v2), we

have δC⊗
(
δC⊗(c, v) \ c, w

)
= ∅. Thus, δC⊗(c, vw) = δC⊗(c, w) ∪ δC⊗

(
δC⊗(c, v) \ c, w

)
=

δC⊗(c, w), a contradiction.
There must be a word v2 ∈ Σ′∗ in (C,E) and a state d ∈ δCP×W(c, v2) with

v2 ̸= v1, p
−1(v1) = p−1(v2) = v and δC⊗(d,w) ̸= ∅. Hence, with this word v, we

have a state d ̸∼P×W c with {c, d} ⊆ δC⊗(c, v) and δ
C
⊗(d,w) ̸= ∅. ⊓⊔

Lemma 44. Let w ∈ Σ∗. Suppose there are a word v ∈ Σ∗ and a state d ̸∼P×W
c with {c, d} ⊆ δC⊗(c, v) and δ

C
⊗(d,w) ̸= ∅. Then δC⊗(c, vw)/∼B⊗

⊋ δC⊗(c, w)/∼B⊗
.

Proof. We use the unambiguity of the corresponding ⪯-maximal SCC (C ′, E′).
Since c ∈ δC⊗(c, v), it holds that δC⊗(c, vw) ⊇ δC⊗(c, w), and δC⊗(c, vw)/∼B⊗

⊇
δC⊗(c, w)/∼B⊗

.

We show c1 ̸∼B⊗ d1 for all c1 ∈ δC⊗(c, w) and d1 ∈ δC⊗(d,w). Such d1 must exist
as δC⊗(d,w) ̸= ∅. Let c1 ∈ δC⊗(c, w) and d1 ∈ δC⊗(d,w). Assume for contradiction

that c1 ∼B⊗ d1. By Lemma 42, there are {c′′, d′} ⊆ δC
′

⊗′ (c′, v), c′1 ∈ δC
′

⊗′ (c′′, w)

and d′1 ∈ δC
′

⊗′ (d′, w) such that free(c′′) ∼B⊗ c, free(d′) ∼B⊗ d, free(c′1) ∼B⊗ c1
and free(d′1) ∼B⊗ d1. If c1 ∼B⊗ d1, then the languages of c′1 and d′1 will be the
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same as well. Take a word w′ ∈ Σω in the language of c′1. Since c ̸∼P×W d, we
have c ̸∼B⊗ d, and c′′ ̸= d′. Then, in B⊗′ , for the word vww′ ∈ Σω, there are
two accepting runs: one through v to c′′, then through w to c′1 and the other
run through v to d′, then through w to d′1. This contradicts the fact that B⊗′ is
unambiguous by Lemma 23. Thus, as δC⊗(c, vw) ⊇ δC⊗(c, w)∪{d1}, and d1 ̸∼B⊗ c1
for all c1 ∈ δC⊗(c, vw), we have δC⊗(c, vw)/∼B⊗

⊋ δC⊗(c, w)/∼B⊗
. ⊓⊔

Lemma 14. Let C be a positive MCC. Then

(1) C has a cut K ⊆ C and µ⊺
CχC = 1, that is,

∑
k∈K χ(k) = 1.

(2) One can compute a cut K for C in polynomial time.

Proof. If it does not hold that ∃v ∈ Σ∗ and d ̸∼P×W c with {c, d} ⊆ δC⊗(c, v)
and δC⊗(d,w) ̸= ∅, by Lemma 43 and Lemma 44, the word w gives the cut
δC⊗(c, w)/P×W .

For the complexity of the algorithm, in every iteration, the set δC⊗(c, w)/∼P×W

increases by Lemma 44, so the algorithm terminates after at most |C| iterations.
By Lemma 43, the algorithm returns a cut.

Consider the directed graph G = (V,EV ) with

V = {(p, p′, s) ∈ QG ×QG × S | ⟨ps⟩, ⟨p′s⟩ ∈ C}
EV = {(p, p′, s) → (q, q′, t) | ∃a ∈ Σ such that ⟨qt⟩ ∈ δC⊗(⟨ps⟩, a)

and ⟨q′t⟩ ∈ δC⊗(⟨p′s⟩, a)}

Let c = ⟨p0t0⟩. For any v = v1 · · · vn ∈ Σ∗, a run of v in the LMC
t0v1t1 · · · vntn and cn = ⟨pnsn⟩ ∈ C we have δC⊗(c, v) ⊇ {cn, c′n} iff there are
p1, p

′
1, · · · , pn, p′n such that (p0, p0, t0) → (p1, p

′
1, t1) → · · · → (pn, p

′
n, tn) is a

path in G. It follows that with a polynomial reachability analysis of G one can
compute all d ∈ C for which there exists vd ∈ Σ∗ with {c, d} ⊆ δC⊗(c, vd). The
shortest such vd corresponds to shortest paths in G, hence satisfy |vd| ≤ |V | ≤
|QG |2|S|. Moreover, in polynomial time one can compute the equivalence rela-
tion ∼P×W , and check whether d ∼P×W c, one can also check in polynomial
time whether δC⊗(d,w) ̸= ∅. This is because the equivalence relation ∼P is given
and it is polynomial time to compute ∼W when we read W as deterministic safe
automaton. ⊓⊔

The following propositions are key to prove that χ is the unique solution to
Eq. (2):

Proposition 45. For a positive MCC (C,E) of P × W, we have B
C,Q⊗
⊗ χ =

BC,C
⊗ χC = χC .

Proof. By Lemma 36 and Lemma 38, we have B
(C,p−1(E))
⊗ χC = BC,C

⊗ χC = χC .

We also have χC = B
C,Q⊗
⊗ χ ≥ BC,C

⊗ χC . This completes the proof. ⊓⊔
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Proposition 46. For a positive MCC (C,E) of P × W with a cut vector µC ,
χC is the unique solution to the linear equation system:

BC,C
⊗ x = x

µ⊺
Cx = 1 (6)

Proof. By Lemma 14 and Proposition 45, we have χC is a solution to the linear
equation system Eq. (6). By (3) of Proposition 25 and Proposition 35, we have
χC is strictly positive. Assume there is another nonnegative vector y solves
Eq. (6). Obviously, y is nonzero.

We choose an entry ⟨qs⟩ ∈ C such that f = y(⟨qs⟩)/χ(⟨qs⟩) is maximal.
Since C is strongly connected, we have y(⟨q′s′⟩) = f ·χ(⟨q′s′⟩) for all successors
of ⟨q′s′⟩ ∈ C of ⟨qs⟩. That is, y is a scalar multiple of χC .

We have µ⊺
CχC = 1 = µ⊺

Cy, hence χC = y. ⊓⊔

We can now establish our main result on quantitative model checking.

Theorem 15. (Quantitative MCMC) Given an LMC M and a UBA U , the
linear equation system Eq. (2) has a unique solution v. Moreover, we have v = χ,
and thus PrM(L(U)) = v(q0), where q0 denotes the initial state in P ×W.

Proof. First, we show that χ uniquely solves Eq. (2). The vector χ solves Eq. (2):
this follows from Proposition 11, Proposition 12 and Lemma 14.

To show uniqueness, we assume for contradiction that there is a solution
(nonnegative and nonzero) y ̸= χ to Eq. (2). For all states ⟨qs⟩ that cannot
reach a positive MCC, we have χ(⟨qs⟩) = y(⟨qs⟩) = 0 by Proposition 12.

We select an entry ⟨qs⟩ in y such that χ(⟨qs⟩) > 0, y(⟨qs⟩) ̸= χ(⟨qs⟩) and
f = y(⟨qs⟩)/χ(⟨qs⟩) is maximal. We have f > 0 and f ̸= 1.

Such a state must exist and a positive MCC must be reachable from ⟨qs⟩ as
χ(⟨qs⟩) > 0. We have that all states ⟨q′s′⟩ that are reachable from ⟨qs⟩ in B⊗
also satisfy y(⟨q′s′⟩) = f · χ(⟨q′s′⟩). This can be shown by induction from the
successors of ⟨qs⟩.

By Proposition 45 and Proposition 46, the values of the states ⟨q′s′⟩ in a
positive MCC are unique, that is, y(⟨q′s′⟩) = χ(⟨q′s′⟩) > 0, which contradicts
that y(⟨q′s′⟩) = f · χ(⟨q′s′⟩) ̸= χ(⟨q′s′⟩).

Second, let q0 be the initial state of P ×W, we have χ(q0) = χ(⟨q0Gs0⟩) =
Prs0(p

−1(L(P))) = Prs0(L(U)) = PrM(L(U)), by Lemma 7. ⊓⊔

C A family of UBAs with exponential gain

Here we will expand on the family of UBAs provided in Section 5 and prove
Theorem 17. First, we recall the family of UBAs.

Definition A UBA Un = (Σ,Qn, δn, {q0}, αn) in the family consisting of

– the alphabet Σ = {σ, π,#, $}
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– the set of states Qn = {q$} ∪ 2Bn for Bn = {q0, . . . , qn−1} and {q0} is the
initial state

– the transition function δn producing the set of transitions ∆n ⊆ Qn×Σ×Qn

σ : (P, σ, P ′) ∈ ∆n for P ′ =
{
q(i+1) mod n | qi ∈ P

}
,

π : (P, π, P ′) ∈ ∆n for P ′ = {qi | qi ∈ P ∧ i ≥ 2}∪{qi mod 2 | qi ∈ P ∧ i < 2}
# : (P,#, P ′) ∈ ∆n for P ′ = {q1, . . . , qn−1} if P = {q0} and P \ {q0}
otherwise;
$ : (P, a, q$) ∈ ∆n ∀P ∈ 2Bn , a ∈ Σ \ {$}; (q$, $, {q0}) ∈ ∆n; (q$, $, q$) ∈ ∆

– set of transitions αn ⊆ ∆n describing the acceptance condition: αn =
{(P1,#, P2) ⊆ ∆n | q0 ∈ P1}∪{(P, a, q$)|P ∈ 2Bn}∪{(q$, $, {q0}), (q$, $, q$)}

The UBA U3 in this family is illustrated on the left of Fig. 1. Using the states
P ⊆ B3, U3 tracks a the set of tokens present in these boxes and follow them
in the course of various actions until each of them is discarded. Then Un starts
tracking a new set of tokens.

Let An be the automata over Σ\$ = {σ, π,#} obtained by restriction of Un

to the set of states Qn \ {q$} and ∆n, αn to transitions labelled by Σ\$ over
Qn \ {q$}. Note that An is deterministic.

For qi ∈ Bn, let Lsafe(A{qi}
n ) be the set of infinite words which never encoun-

ters transitions from αn when starting from {qi}. Equivalently, these are the
words under which the token from box qi stays for an infinite duration. When
An is read as a deterministic co-Büchi automaton, the language of the DCA An

is L(An) =
{
ww′ ∈ Σω | w′ ∈ Lsafe(A{qi}

n ) for some qi

}
. When read as a DBA,

its language is L(An) = Σω \ L(An).

L(Un) = Lω
$ ∪ L∗

n

where

Lω
$ = {w ∈ Σω | w doesn’t start with $ and has infinitely many $’s} = Σ\$(Σ

∗$)ω ,

L∗
n =

{
ww′ | where w ∈ Σ∗ and w′ ∈ L(An)

}
The words in Lω

$ contain infinitely many $’s, whereas the words in L∗
n contain

only finitely many $’s and a suffix in L(An).

Lemma 47. The automaton Un is unambiguous.

Proof. Any valid run of a word in Un can encounter nondeterministic choices
in two possible cases. Firstly, when from some state P and a ∈ Σ \ {$}, the
choice is between δn(P, a) and q$. Since from q$ the only available transition is
on $, it follows that the transition to q$ is taken iff the letter following a is $.
In the second case, at q$ on reading letter $, either it can stay on q$ or take
transition to {q0}. Again, since from {q0} the only valid transitions are on Σ, we
can conclude that at q$ on letter $ the transition to {q$} is taken iff the letter
following $ is also $. Since any word w ∈ L(Un) has a unique accepting run, Un

is indeed a UBA. ⊓⊔
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Determinisation Alg. 3 determinises the UBAs Un by augmenting the alphabet
Σ. We can use a map p that makes it explicit in the actions from Σ if the next
transition leads to q$. Since there are at most two nondeterministic choices at
every state in Un, we can resolve the nondeterminism with a boolean variable.
A value of 1 (denoting the next action is not $) will direct a state to transition
to the original DCA An, while a value of 0 (denoting the next action is $) will
direct it to the state q$. The result is a DBA Dn over Σ′ = Σ×{0, 1} . Since we
will later treat Dn as a DCA Cn accepting the complement language, we make it
complete by adding a new sink state, ⊥. Specifically, we add ᾱ (non-accepting for
Büchi conditions) ⟨$, 0⟩- and ⟨$, 1⟩-transitions from P to ⊥ for all P ∈ 2Qn and
for the missing letters from q$ to ⊥, and a ᾱ (non-accepting for Büchi conditions)
self-loop on ⊥ for all letters in Σ′. In this manner, we obtain the family of DCA
Cn = (Σ′, 2Qn ∪ {q$,⊥}, δCn

, {q0}, αCn
).

Essentially, in order to perform the action $, first one needs to perform an
action of the form ⟨a, 0⟩ otherwise it is a wasted word that goes to the state ⊥.
Also, in the “all discard” state q$ one can only perform a discard action of the
form ⟨$, i⟩ and any other action will be wasted and go to the state ⊥. L(Cn) con-
tains all words that are either wasted or under which some token stays infinitely.
Let L⊥ be the set of wasted word i.e. words that enter ⊥ after a finite duration.

Hence L(Cn) = L⊥ ∪
{
w ∈ Σ′ω | w has a suffix in Lsafe(C{qi}

n ) for some qi

}
Next we will define a family of NCAs that accept the same language as Cn.

These will turn out to be GfG-NCAs and exponentially smaller than Cn’s.

Family of small GfG-NCA Gn Here we define our family of NCAs {Gn}n≥2

with Gn = ⟨Σ′, QGn
, q0, δGn

, αGn
⟩. where the set of states is QGn

= Bn ∪ {q$,⊥}.
Intuitively instead of tracking a set tokens, we now track only one token at any
instance. The transition function δGn is defined as follows:

– δGn
(qi, ⟨σ, 1⟩) = {q(i+1) mod n} for all qi ∈ Bn,

– δGn
(q0, ⟨π, 1⟩) = {q1}, δGn

(q1, ⟨π, 1⟩) = {q0}, δGn
(qi, ⟨π, 1⟩) = {qi} for all

i ≥ 2,
– δGn(q0, ⟨#, 1⟩) = Bn, δGn(qi, ⟨#, 1⟩) = {qi} for all i ≥ 1,
– δGn

(q$, ⟨$, 1⟩) = {q0},
– δGn

(q$, ⟨$, 0⟩) = {q$},
– δGn(qi, ⟨a, 0⟩) = {q$} for all qi ∈ Bn and a ∈ Σ and ,
– from every state, it transitions to⊥ for the missing letters, that is, δGn

(q, a) =
{⊥} for all q ∈ QGn and all the other letters a ∈ Σ′.

The set of transitions αGn is defined to be {(q0, ⟨#, 1⟩, qi) | qi ∈ Bn} ∪
{(qi, ⟨a, 0⟩, q$) | a ∈ Σ} ∪ {(q$, ⟨$, 0⟩, q$), (q$, ⟨$, 1⟩, q0)}. Let LG

⊥ denote the lan-
guage of words that end up in state ⊥ in Gn. Then the language accepted by
NCA Gn is L(Gn) = LG

⊥ ∪
{
w ∈ Σ′ω | w has a suffix in Lsafe(Gqi

n ) for some qi
}

Lemma 48. The following statements are true:

– L(Cn) = L(Gn).
– Gn is a GfG automaton.
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Proof. Recall that

L(Cn) = L⊥ ∪
{
w ∈ Σ′ω | w has a suffix in Lsafe(C{qi}

n ) for some qi

}
. Since

the safe component in the automaton restricted to states from {{q0}, . . . , {qn−1}}
in Cn and the one restricted to states from Bn in Gn are the same, we have

Lsafe(C{qi}
n ) = Lsafe(Gqi

n ). By the same argument the language we have L⊥ = LG
⊥.

Finally, any run to states {qi} in Cn can be simulated by a run to qi in Gn

and vice versa. The same holds for ⊥ states in both automata. Hence we have
L(Cn) = L(Gn).

To show that Gn is a GfG automaton observe that the only non-determinism
is in state q0 on reading ⟨#, 1⟩ which discards only the tracked token in box
q0. One can design a resolver using the exact idea underlying the automaton
Cn where we track a set of non-discarded tokens. Even though each state of
Gn tracks a single token, in the resolver memory we track all non-discarded
tokens from the point when Gn started tracking the current token. Once this
token gets discarded from q0, in Gn we can start tracking another non-discarded
token using the memory. Essentially this tracks all tokens that has stayed for the
longest duration up to that point. Formally, the resolver is R = (M,m0, g) with
M = QCn

, the initial memory state m0 = {q0} and a partial memory function
g : M × Bn × Σ′

$ 7→ M × Bn defined below which is not valid on inputs of the
form (P, q, a) where P ⊆ Bn ∧ q ̸∈ P . Recall that δCn

is the transition function
of Cn. Also since δGn is nondeterministic only at q0 on input ⟨#, 1⟩, we abuse the
notation for deterministic transitions by writing δGn(q, a) to signify the state Gn

transitions to on input a from q.

– g(P, q0, ⟨#, 1⟩) ={
(P \ {q0}, qj) where j = min

i
{i|i > 0 ∧ qi ∈ P} if P ⊆ Bn∧ | P |> 1

(Bn \ {q0}, q1) if P = {q0}
– g(m, q, a) = (δCn(m, a), δGn(q, a)) for every other transition

Let w = a0a1 · · · ∈ L(Gn) and ρ = q0ρ1 · · · be an accepting run of Gn over w. Let
(m0, q0)(m1, ρ

′
1) · · · be the run induced by R and let ρ′ = q0ρ

′
1 · · · . By definition,

there must be an integer k > 0 such that (ρj , aj , ρj+1) /∈ αGn
for all j ≥ k. If ρ is

accepting by reaching ⊥, then ρ′ will also reach ⊥ since the transition to ⊥ are
similar and as a result become accepting. Also if ρ′ is non-accepting by visiting
q$ infinitely often, then ρ also visits q$ infinitely often, since the transitions to
q$ are deterministic. The only other way ρ can be accepting is if all transitions
from ρk onwards are safe transitions in the part restricted to Bn. And the only
way ρ′ is non-accepting while staying in Bn is to read ⟨#, 1⟩ from q0 infinitely
often. Observe that from k onwards, for any two consecutive reading of ⟨#, 1⟩
from q0 under ρ′, i.e. for k1 < k2, with ρ

′
k1

= ρ′k2
= q0 and ak1 = ak2 = ⟨#, 1⟩

if mk1 ̸= {q0}, we have |mk1 | > |mk2 |. Thus for some h ≥ k, we would have
ρ′h = q0, ah = ⟨#, 1⟩ with mh = Bn \ {q0}. Since ah = ⟨#, 1⟩, it follows that
ρh ̸= q0. Hence, ρh ∈ mh and from definition of g, ρj ∈ mj ∀j ≥ h. Hence for
some h′ > h, we will have ρ′h′ = q0, ah′ = ⟨#, 1⟩ and ρ′h′+1 = ρh′+1. But then
from h′ + 1 onwards the runs ρ and ρ′ will be the same resulting in ρ′ to be
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an accepting run. Hence ρ′ is an accepting run of w. Therefore, Gn is a GfG
automaton.

The construction details of the strategy is a simplified version of the con-
struction of an anytime restart resolver in Appendix B.1. ⊓⊔

Clearly Gn is exponentially smaller than Cn and Un. Thus, the minimal GfG-
NCA recognising the same language as Cn is exponentially smaller than Cn, and
thus Un. This proves Theorem 17.
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