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Abstract. We revisit congruence relations for Büchi automata, which
play a central role in automata-based formal verification. The size of the

classical congruence relation is in 3O(n2), where n is the number of states
of the given Büchi automaton. We present improved congruence relations
that can be exponentially coarser than the classical one. We further give
asymptotically optimal congruence relations of size 2O(n logn). Based on
these optimal congruence relations, we obtain an optimal translation
from a Büchi automaton to a family of deterministic finite automata
(FDFA), which can be made to accept either the original language or its
complement. To the best of our knowledge, our construction is the first
direct and optimal translation from Büchi automata to FDFAs.

1 Introduction

Congruence relations for nondeterministic Büchi automata (NBAs) [6] are fun-
damental for Büchi complementation, a key operation used in the formal verifi-
cation framework based on automata theory [14]. To formally verify whether the
behavior of a system A satisfies a given specification B, one usually reduces this
problem to a language-containment problem between the NBAs A and B; this
containment problem is then reduced to the nonemptiness of the intersection of
A and the complement of B. The first complementation construction for Büchi
automata, proposed by Büchi [6] and widely known as Ramsey-based Büchi

complementation (RBC), relies on a congruence relation with a 22
O(n)

blow-up,
where n is the number of states of the input automaton. One can associate each
equivalence class of the congruence relation with a state of the complementary
automaton, similarly to the characterization provided by the Myhill-Nerode the-
orem for regular languages [22]. The blow-up of the congruence relation of RBC

was later reduced by Sistla et al. [21] to 3O(n2), without providing an explicit
formal notion of congruence relation, which was later formalized by Thomas [22].

Notably, current practical approaches to the containment checking for NBAs
are based on the classical congruence relation given in [21, 22], even though it



has a larger blow-up (3O(n2) vs. 2O(n logn)) than other optimal complementation
constructions, such as the rank-based complementation [15]. In fact, RABIT, the
state-of-the-art tool for checking language-containment between NBAs, is also
based on the classical congruence relation of [21, 22] and has integrated various
state-space pruning techniques for RBC, proposed in [1, 2, 8].

In another line of work, families of deterministic finite automata (FDFAs) [3]
have been proposed for representing ω-regular languages, as an alternative to
NBAs. By modelling a given system and specification as FDFAs, the formal ver-
ification problem can be reduced to a containment problem between two FDFAs,
which can be done in polynomial time [3], in contrast to PSPACE-completeness
for NBAs [14]. It has been shown that an FDFA can be induced from a congru-
ence relation defined over a given ω-regular language, where each state of the
FDFA corresponds to an equivalence class of the congruence relation [4].

In this work we show that RBC and FDFAs have an intimate connection:
congruence relations for NBAs constitute the underlying concept that connects
them. This connection gives us the possibility to further tighten the congru-
ence relations for both RBC and FDFAs (see Sections 3.2 and 4). In fact, the
state-space pruning techniques developed in [1,2] for RBC [21,22] are inherently
heuristics for identifying subsumption and simulation relations between congru-
ence relations of RBC. Therefore, in order to further theoretically or empirically
improve model-checking algorithms based on RBC or FDFAs, it is important
to understand congruence relations for both FDFAs and RBC and, hopefully,
make their congruence relations coarser. This motivates our search for better
congruence relations for NBAs.

Contribution. We focus here on an in-depth study of congruence relations for
NBAs and their connection to FDFAs. First, we show how to improve the classi-
cal congruence relation v with a blow-up of 3O(n2), defined by the classical RBC,
to congruence relations that can be exponentially tighter (Theorem 3), but can
never be larger than the classical congruence relation v (Theorem 2). Notably,
the improved congruence relations only have a blow-up of O(n2) when dealing
with deterministic Büchi automata (Theorem 4). Second, we further propose
congruence relations for NBAs with a blow-up of only 2O(n logn) (Lemma 11),
which is then proved to be optimal (Theorem 7). Finally, we show that our
congruence relations define an FDFA recognizing Σω \ L(A) from an NBA A.
In particular, if A has n states, then our optimal congruence relations yield an
FDFA F with an optimal complexity 2O(n logn). Thus, to the best of our knowl-
edge, we present the first direct translation from an NBA to an FDFA with
optimal complexity. Missing proofs can be found in [18].

2 Preliminaries

Fix an alphabet Σ. A word is a finite or infinite sequence of letters in Σ; ε
denotes the empty word. Let Σ∗ and Σω denote the set of all finite and infinite
words (or ω-words), respectively. In particular, we let Σ+ = Σ∗ \ {ε}. A finitary



language is a subset of Σ∗; an ω-language is a subset of Σω. Let L be a finitary
language (resp., ω-language); the complementary language of L is Σ∗ \L (resp.,
Σω\L). Let ρ be a sequence; we denote by ρ[i] the i-th element of ρ and by ρ[i..k]
the subsequence of ρ starting at the i-th element and ending at the k-th element
inclusively when i ≤ k, and the empty sequence ε when i > k. Given a finite word
u and a word w, we denote by u ·w (uw, for short) the concatenation of u and w.
Given a finitary language L1 and a finitary/ω-language L2, the concatenation
L1 ·L2 (L1L2, for short) of L1 and L2 is the set L1 ·L2 = {uw | u ∈ L1, w ∈ L2 }
and Lω1 the infinite concatenation of L1.

NBAs. A (nondeterministic) automaton is a tuple A = (Q, I, δ, F ), where Q
is a finite set of states, I ⊆ Q is a set of initial states, δ : Q × Σ → 2Q is a
transition function, and F ⊆ Q is a set of accepting states. We extend δ to
sets of states, by letting δ(S, a) =

⋃
q∈S δ(q, a). We also extend δ to words, by

letting δ(S, ε) = S and δ(S, a1a2 · · · ak) = δ(δ(S, a1), · · · , ak), where we have
k ≥ 1 and ai ∈ Σ for i ∈ {1, · · · , k}. An automaton on finite words is called
a nondeterministic finite automaton (NFA), while an automaton on ω-words is
called a nondeterministic Büchi automaton (NBA). An NFA A is said to be a
deterministic finite automaton (DFA) if |I| = 1 and for each q ∈ Q and a ∈ Σ,
|δ(q, a)| ≤ 1. Deterministic Büchi automata (DBAs) are defined similarly.

A run of an NFA/NBA A on a finite word u of length n ≥ 0 is a sequence of
states ρ = q0q1 · · · qn ∈ Q+, such that for every 0 < i ≤ n, qi ∈ δ(qi−1, u[i]). We

write q0
u−→qn if there is a run from q0 to qn over u and by q0

u
=⇒qn if such a run also

visits an accepting state. Obviously, we have that q
ε−→q for all q ∈ Q and q

ε
=⇒q for

all q ∈ F . A finite word u ∈ Σ∗ is accepted by an NFA A if there is a run q0 · · · qn
over u such that q0 ∈ I and qn ∈ F . Similarly, an ω-run of A on an ω-word w is
an infinite sequence of states ρ = q0q1 · · · such that q0 ∈ I and for every i > 0,
qi ∈ δ(qi−1, w[i]). Let Inf(ρ) be the set of states that occur infinitely often in the
run ρ. An ω-word w ∈ Σω is accepted by an NBAA if there exists an ω-run ρ ofA
over w such that Inf(ρ)∩F 6= ∅. The finitary language recognized by an NFA A,
denoted by L∗(A), is defined as the set of finite words accepted by it. Similarly,
we denote by L(A) the ω-language recognized by an NBA A, i.e., the set of
ω-words accepted by A. NFAs/DFAs accept exactly regular languages while
NBAs recognize exactly ω-regular languages. The complementary automaton of
an NBA A accepts the complementary language of L(A), i.e., Σω \ L(A).

Congruence Relations. A right congruence (RC) relation is an equivalence
relation v over Σ∗ such that x v y implies xv v yv for all v ∈ Σ∗. A congruence
relation is an equivalence relation v over Σ∗ such that x v y implies uxv v uyv
for every x, y, u, v ∈ Σ∗. We denote by |v| the index of v, i.e., the number of
equivalence classes of v. A finite congruence relation is a congruence relation
with a finite index. We denote by Σ∗/v the set of equivalence classes of Σ∗

under v; we use Σ+/v to denote the same set of equivalence classes excluding
ε. Given x ∈ Σ∗, we denote by [x]v the equivalence class of v that x belongs to.
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Fig. 1. An example of FDFA F = (M, {Ns}) which is not saturated.

For a given right congruence v of a regular language L, it is well-known that
the Myhill-Nerode theorem [19, 20] defines a unique minimal DFA D of L, in
which each state of D corresponds to an equivalence class defined by v over Σ∗.
Therefore, we can construct a DFA D[v] from v in a standard way.

Definition 1 ([19,20]). Let v be a right congruence of finite index. The DFA
D[v] without accepting states induced by v is a tuple (S, s0, δD, ∅) where S =
Σ∗/v, s0 = [ε]v, and for each u ∈ Σ∗ and a ∈ Σ, δD([u]v, a) = [ua]v.

The DFA D[v] is parametric on v, indicating that it is induced by the right
congruence relation v. We may just write D if v is clear from the context.

UP-words. The ω-regular languages accepted by NBAs can also be recognized
by FDFAs by means of their ultimately periodic words (UP-words) [3]. A UP-
word w is an ω-word of the form uvω, where u ∈ Σ∗ and v ∈ Σ+. Thus w = uvω

can be represented as a pair of finite words (u, v), called a decomposition of w.
A UP-word can have multiple decompositions: for instance (u, v), (uv, v), and
(u, vv) are all decompositions of uvω. For an ω-language L, let UP(L) = {uvω ∈
L | u ∈ Σ∗ ∧ v ∈ Σ+ } denote the set of all UP-words in L. The set of UP-words
of an ω-regular language L can be seen as the fingerprint of L, as stated below.

Theorem 1 ([7]). (1) Every non-empty ω-regular language L contains at least
one UP-word. (2) Let L and L′ be two ω-regular languages. Then L = L′ if and
only if UP(L) = UP(L′).

FDFAs. Based on Theorem 1, Angluin et al. introduced in [3] the notion of
FDFAs as another type of automata to recognize ω-regular languages.

Definition 2 (FDFAs [3]). An FDFA is a pair F = (M, {Nq}) consisting of
a leading DFA M and of a progress DFA Nq for each state q in M.

Intuitively, the leading DFA M of F = (M, {Nq}) for an ω-regular language L
consumes the finite prefix u of a UP-word uvω ∈ UP(L), reaching some state q,
and for each state q ofM, the progress DFA Nq accepts the period v of uvω. An
example of FDFA F is depicted in Fig. 1 where the leading DFA M has only
the state s and the progress DFA associated with s is Ns. Note that the leading
DFA M of every FDFA does not make use of accepting states.

Let D be a DFA with initial state q0 and transition function δ. Given a
word u ∈ Σ∗, we often use D(u) as a shorthand for δ(q0, u). Each FDFA F
characterizes a set of UP-words UP(F) by following the acceptance condition.



Definition 3 (FDFA Acceptance). Let F = (M, {Nq}) be an FDFA and w
be a UP-word. A decomposition (u, v) of w is normalized with respect to F if
M(u) =M(uv).1 A decomposition (u, v) is accepted by F if (u, v) is normalized
and we have v ∈ L∗(Nq) where q =M(u). The UP-word w is accepted by F if
there exists a decomposition (u, v) of w accepted by F .

Note that the normalized decomposition (u, v) is defined with respect to F . We
usually omit F and just say (u, v) is normalized when F is clear from the context.
Consider again the FDFA F from Fig. 1: (aba)ω is not accepted since no decom-
position of (aba)ω is accepted, while (ab)ω is accepted since the decomposition
(ab, ab) of (ab)ω is such that M(ab · ab) =M(ab) = s and ab ∈ L∗(Ns).

One can observe that the normalized decomposition (ab, abab) of (ab)ω is
not accepted by F , despite that (ab, ab) is accepted by F . In the following, we
define a class of FDFAs that saturates every accepting normalized decomposition
(ab, (ab)k) of (ab)ω (where k ≥ 1) if (ab, ab) is accepted, which is important for
FDFAs to recognize ω-regular languages [3, 17].

Definition 4 (Saturation of FDFAs [3]). Let F = (M, {Nq}) be an FDFA
and w be a UP-word in UP(F). We say F is saturated if for all normalized
decompositions (u, v) and (u′, v′) of w, either both (u, v) and (u′, v′) are accepted
by F or both are not.

Intuitively, for a saturated FDFA F , a UP-word w is accepted by F if and
only if all normalized decompositions (u, v) of w are accepted by F . From a
saturated FDFA F , one can construct an equivalent NBA A that recognizes
UP(F) in polynomial time.

Lemma 1 (Polynomial Translation from FDFAs to NBAs [3, 17]). Let
F = (M, {Nq}) be a saturated FDFA with n states. Then, one can construct an
NBA A with O(n3) states such that UP(F) = UP(L(A)).

Note that an FDFA that is not saturated does not necessarily recognize an ω-
regular language (cf. [17]), let alone permit an equivalent translation to NBAs.

In the remainder of the paper, we fix an NBA A = (Q, I, δ, F ), unless explic-
itly stated otherwise, where A has n states, i.e., n = |Q|. We call a state in an
FDFA a macrostate to distinguish it from states of A.

3 Improved Congruence Relations for NBAs

In this section we present congruence relations that can be used to construct
NBAs accepting the language of a given NBA A or its complement. We first
review in Section 3.1 the classical congruence relations defined in [21, 22] and
then give improved congruence relations in Section 3.2.

1 We use the normalized decomposition of UP-words defined in [17], which is different
from the one given in [3]. Ours is a definition for a UP-word, while their definition
is applied to a decomposition. However, this difference does not affect the definition
of a saturated FDFA to be given later.



3.1 Classical Congruence Relations

As mentioned in the introduction, the index of the congruence relation of RBC
proposed by Büchi [6] is doubly exponential in the size of A. Sistla, Vardi, and
Wolper [21] showed how to improve RBC with a subset construction that was
later presented by Thomas [22] as the following congruence relation vA.

Definition 5 ([21,22]). In the RBC construction, for all u1, u2 ∈ Σ∗, we have

u1 vA u2 if for all q, r ∈ Q, (1) q
u1−→r iff q

u2−→r and (2) q
u1==⇒r iff q

u2==⇒r.

It is easy to verify that vA is a (right-)congruence relation: given two finite
words u1 and u2 such that u1 vA u2, we have that xu1y vA xu2y holds for all
x, y ∈ Σ∗. Moreover, we have that vA is of finite index, as stated by the next
lemma. To simplify the notation, we just write v instead of vA as A is fixed.

Lemma 2 ([21,22]). Let v be as given in Definition 5. Then |v| ≤ 3n
2

.

Since the congruence relation v is defined by reachability between states,
the result follows from the fact that we can map each of the n2 pairs of states
(q, r) to either both q

u
=⇒r and q

u−→r, just q
u−→r, or none of them. Thus we have

|v| = |Σ∗/v| ≤ 3n
2

. We can also establish a lower bound for v, by means of a
family of DBAs inspired by the proof of [4, Theorem 2].

Lemma 3. There is a family of DBAs {Cn}n∈N such that each DBA Cn has
n+ 2 states and the corresponding vCn is such that |vCn | ≥ n!.

An important property we want to have is that the congruence relation v
captures correctly the language of the NBA it corresponds to. This means that
v must not relate words in L(A) with those in Σω \ L(A), that is, for each
[u]v ∈ Σ∗/v and [v]v ∈ Σ+/v, either [u]v[v]ωv ⊆ L(A) or [u]v[v]ωv ⊆ Σω \L(A).
Moreover, v should cover the whole Σω, that is, it saturates L(A), Σω \ L(A),
and Σω. This is formalized by the following saturation lemma of the congruence
relation v, which is a known result from [21] that we adapt to our notation.

According to [21, 22], given two classes [u]v ∈ Σ∗/v, [v]v ∈ Σ+/v, the ω-
language [u]v[v]ωv is called proper if [u]v[v]v ⊆ [u]v and [v]v[v]v ⊆ [v]v.

Lemma 4 (Saturation Lemma [21,22]).

1. For [u]v ∈ Σ∗/v, [v]v ∈ Σ+/v, if [u]v[v]ωv is proper, then either [u]v[v]ωv ∩
L(A) = ∅ or [u]v[v]ωv ⊆ L(A).

2. Σω =
⋃{ [u]v[v]ωv | [u]v ∈ Σ∗/v ∧ [v]v ∈ Σ+/v ∧ [u]v[v]ωv is proper }.

3. Σω \ L(A) =
⋃{ [u]v[v]ωv | [u]v ∈ Σ∗/v ∧ [v]v ∈ Σ+/v ∧ [u]v[v]ωv ∩L(A) =

∅ ∧ [u]v[v]ωv is proper }.
Thus, it suffices to just consider proper languages to get the languages Σω

(cf. Item (2) of Lemma 4) and Σω \L(A) (cf. Item (3) of Lemma 4). This means
that the congruence relation v allows us to obtain L(A) (resp., Σω \ L(A)) by
identifying the exact set of proper languages that are inside L(A) (resp., outside
L(A)). In the remainder of the paper, we show that we can obtain similar sat-
uration lemmas (cf. Lemma 7 and Lemma 13) for the congruence relations we
are going to propose to obtain L(A) or the complementary language Σω \L(A).



3.2 Improved Congruence Relations for NBAs

In this section, we introduce the relations vi and ≈u, for u ∈ Σ∗, that can never
have larger index than that of the classical congruence relation v (cf. Lemma 5)
while possibly being exponentially coarser than v (cf. Theorem 3). When re-
stricted to DBAs, we reduce the worst-case blow-up from Ω(n!) (cf. Lemma 3)
to O(n2) (cf. Theorem 4). Still, they capture correctly L(A) and Σω \ L(A)
(cf. Lemma 7).

We improve the classical congruence relation v given in Section 3.1 based on
the following key observations: (1) we can use different congruence relations to
process the finite prefix u and the periodic word v of a UP-word uvω, separately,
in a manner similar to FDFAs; (2) the assumption [v]v[v]v ⊆ [v]v of proper
languages is not necessary, according to [21]; (3) inspired by [5], we can consider
only reachable states in A, which allows us to use just right congruences instead
of congruences such as v. We defer the comparison of our work with [5] to
Remark 2.

Instead of considering every pair of states (q, r) of A to define the congruence
relation v (cf. Definition 5), we process the finite prefixes u by a simple subset
construction over the states of A, obtaining the following relation vi that is
obviously a right congruence.

Definition 6 (RC vi). For u1, u2 ∈ Σ∗, we have u1 vi u2 if and only if
δ(I, u1) = δ(I, u2).

As one can expect, by relaxing the conditions on the relation vi, we reduce
how large its index can be, from 3n

2

(cf. Lemma 3) to 2n, showing also that vi

is a right congruence of finite index.

Lemma 5. Let vi be the right congruence in Definition 6. Then |vi| ≤ 2n.

Differently from v (see, e.g., Lemma 4), we will use vi only to process the
finite prefix u of a UP-word uvω; to process the period v, we now introduce the
right congruence ≈u, by considering only states reachable from δ(I, u).

Definition 7 (RC ≈u). For u, v1, v2 ∈ Σ∗, we have v1 ≈u v2 if for all states

q ∈ δ(I, u) and r ∈ Q of A, (1) q
v1−→r iff q

v2−→r and (2) q
v1==⇒r iff q

v2==⇒r.

Compared to Definition 5, we only take into account the states that can be
reached from δ(I, u), as opposed to the whole set Q. In this way we obtain a
right congruence relation that is coarser than v for the periodic finite words.

Theorem 2. Let v be the congruence relation in Definition 5. For each u, v1, v2 ∈
Σ∗, we have that v1 v v2 implies that v1 ≈u v2.

Similarly, u1 v u2 implies that u1 vi u2 for all u1, u2 ∈ Σ∗.

Although the right congruence relation ≈u is coarser than its predecessor v,
it has the same upper bound for its index (cf. Lemma 2).

Lemma 6. Given u ∈ Σ∗, let ≈u be as defined in Definition 7. Then |≈u| ≤ 3n
2

.
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Fig. 2. The family of NBAs {Bn}n∈N over the alphabet {0, 1, · · · , n} with n+ 3 states
for which |v| is at least n! while |≈u| is at most (n+ 3) + 2 for each u ∈ Σ∗; the initial
state is q and F = {q, q−1}. We remark that this NBA is inspired by a DBA from [4].
However, our NBA is not deterministic.

Despite this common upper bound, |≈u| can be exponentially smaller than
|v|, as witnessed by the family of NBAs {Bn}n∈N depicted in Fig. 2.

Theorem 3. Given u ∈ Σ∗, let v be the congruence relation in Definition 5 and
≈u be the right congruence in Definition 7. There is a family of NBAs {Bn}n∈N
with n+ 3 states for which |v| ≥ n! and |≈u| ≤ (n+ 3) + 2.

The idea underlying this result is that in vi, there are at most n+ 4 equiv-
alence classes, which correspond to the singletons {r} with r ∈ Q and the set
{q−1, q0}. For each of these classes, say [u]vi = [1]vi , the associated classes [v]≈u
can correspond to at most (n + 3) + 2 configurations of (accepting) runs, like

{q1 v−→q1} and {q1 v−→q0, q1 v=⇒q0, q1 v−→q−1, q1 v=⇒q−1}. On the other hand, since v

must take care of both prefixes and periods, different permutations of {1, · · · , n}
taken as prefixes cannot be equivalent, thus |v| ≥ n!. We refer to [18, proof of
Theorem 3] for more detailed reasoning and explanations.

When working with DBAs, the overall index of the right congruence relations⋃
u∈Σ∗{≈u} can be exponentially tighter than that of v (cf. Lemma 3).

Theorem 4. Let A be a DBA with n states. Then Σ[u]vi∈Σ∗/vi |≈u| ∈ O(n2).

Similarly to Lemma 4, the saturation lemma for v, the right congruences vi

and ≈u with u ∈ Σ∗ also allow us to recognize exactly L(A) or its complement
Σω \L(A): for these relations we have again that the ω-language [u]vi [v]ω≈u with
uv vi u is either completely inside L(A) or outside L(A), even if we drop the
requirement [v]≈u [v]≈u ⊆ [v]≈u .

Lemma 7 (Saturation Lemma for (vi,∪u∈Σ∗{≈u})).

1. For u ∈ Σ∗, v ∈ Σ+, if uv vi u, then either [u]vi [v]ω≈u ∩ L(A) = ∅ or
[u]vi [v]ω≈u ⊆ L(A).

2. Σω =
⋃{ [u]vi [v]ω≈u | [u]vi ∈ Σ∗/vi ∧ [v]≈u ∈ Σ+/≈u ∧ uv vi u }.



3. Σω \ L(A) =
⋃{ [u]vi [v]ω≈u | [u]vi ∈ Σ∗/vi ∧ [v]≈u ∈ Σ+/≈u ∧ uv vi

u ∧ [u]vi [v]ω≈u ∩ L(A) = ∅ }.

By definition of vi and ≈u, if uv vi u, then the set of states δ(I, u) is visited
infinitely often when reading the word w = uvω; it also implies uvj vi u for each
j ≥ 0. Moreover, if w ∈ L(A), then there is a run of A over w that is accepting,
i.e., the run visits infinitely often states in F . This happens when dealing with
vω, since u is a finite word; thus A visits an accepting state when reading v on
the way from δ(I, u) to δ(δ(I, u), v) = δ(I, u).

These properties allow us to prove Item (1), i.e., that if w ∈ [u]vi [v]ω≈u∩L(A),
then for each word w′ ∈ [u]vi [v]ω≈u we have w′ ∈ L(A), because w′ can be written
as w′ = u′ · v′1 · v′2 · · · with u′ ∈ [u]vi and v′j ∈ [v]≈u for each j ≥ 1. Thus for w′

we have that A visits infinitely often the set δ(I, u′v′j) = δ(I, u′) = δ(I, u) while
visiting an accepting state on the way from δ(I, u′) to δ(δ(I, u′), v′j) = δ(I, u′)
since v ≈u v′j . Item (2) holds by considering only the UP-words (cf. Theorem 1),
for which we have that for each w = u′v′ω ∈ UP(Σω), we can construct a
decomposition (u = u′v′h, v = v′k) of w with u vi uv for some h, k ≥ 1 since vi

is of finite index. By combining Items (1) and (2), to obtain Σω \ L(A), we can
just take the union of all languages [u]vi [v]ω≈u such that [u]vi [v]ω≈u ∩ L(A) = ∅.

4 Optimal Congruence Relations for NBAs

The right congruence relations we introduced in Section 3.2, despite improving
v, still lead to a blow-up of 3O(n2) (cf. Lemma 6). The main cause of the exponent
n2 is that it is possible for each of the n states to be a predecessor of a state r
over the word v. To avoid having to consider all such precedessors, we look for
specific representatives, in order to reduce the blow-up. Inspired by [9, 10], we
introduce a preorder on the states based on the transition structure of A; we then
use the preorder to select the representatives. In particular, if the predecessors
of r can be reduced to only one representative for a given v, we obtain that
the blow-up reduces to 2O(n logn). The representative we are going to use is the
maximal equivalence class induced by the preorder among at most n equivalence
classes. Breuers et al. [5] also proposed a preorder-based optimization to improve
RBC; see Remark 2 for a detailed comparison.

In the remainder of this section, we present a preorder �u inspired by [9,10]
on the set of states δ(I, u), u ∈ Σ∗, yielding optimal congruence relations for
NBAs. The preorder �u over the set of states δ(I, u) is defined by comparing
the finite runs of A over u from the initial states to those states.

Fix a finite word u; given a run π of A over u, recall that π[i] denotes the
i-th element (i.e. state) of π. For each run π, we define the function 1F (π) =
1F (π[1])1F (π[2]) . . . where 1F (s) = 1 if s ∈ F and 0 if s /∈ F . In other words,
each run π can be encoded as a binary sequence. Given two runs π, π′ of A over
u, the two runs π and π′ can be ordered by the lexicographical order with 1 being
larger than 0; formally, we say that π′ is greater than π, denoted by π′ > π, if
there is a prefix α1 of 1F (π′) such that α0 is a prefix of 1F (π). That is, π′ is



greater than π if there is an integer 1 ≤ j ≤ |u|+1 such that π′[j] ∈ F , π[j] /∈ F ,
and π′[i] ∈ F ⇐⇒ π[i] ∈ F for all 1 ≤ i < j (i does not exist when j = 1).

LetΠu,q be the set of runs ofA over u starting from I with the last state being
q. For each state q ∈ δ(I, u), there may be several runs in Πu,q; the set of maximal
runs in Πu,q is defined as max(Πu,q) = {π′ ∈ Πu,q | ∀π ∈ Πu,q, π 6> π′ }. The
following result is a direct consequence of the definition above.

Proposition 1. For two runs πq, π
′
q ∈ max(Πu,q), for each 1 ≤ i ≤ |u| + 1 we

have that πq[i] ∈ F ⇐⇒ π′q[i] ∈ F .

That is, all runs in max(Πu,q) have the same image under 1F .
In the following, we define the preorder �u on the set of states P = δ(I, u)

by comparing the sets of maximal runs max(Πu,q) and max(Πu,r) for q, r ∈ P .

Definition 8 (Preorder �u). Given u ∈ Σ∗,
– if u = ε, then for q, r ∈ I = δ(I, u), we define q �ε r if and only if q ∈
F =⇒ r ∈ F holds. Therefore, q ≺ε r if and only if q /∈ F and r ∈ F ;

– when u ∈ Σ+, for q, r ∈ δ(I, u), q �u r if the runs πq ∈ max(Πu,q) are
not greater than the runs πr ∈ max(Πu,r). In particular, q ≺u r if the runs
πr ∈ max(Πu,r) are greater than the runs πq ∈ max(Πu,q).

One can verify that �u is a binary relation that is reflexive (i.e., for each
q ∈ Q, q �u q) and transitive (i.e., for each q, r, s ∈ Q, q �u r and r �u s implies
q �u s), so it is a preorder; we also have q ≺u r whenever q �u r and r 6�u q
and we write q 'u r whenever q �u r and r �u q. Intuitively, we have q ≺u r if
there is a run from an initial state to r on u that sees an accepting state earlier
than all paths from the initial states to q on u. That is, there is a prefix α1 of
1F (πr) for a run πr to r such that α0 is a prefix of 1F (πq) for all runs πq to q.

Due to Proposition 1, if there is a run πr ∈ max(Πu,r) greater than a run in
max(Πu,q), then all runs in max(Πu,r) are greater than the runs in max(Πu,q).

Example 1. Consider the NBA Bn depicted in Fig. 2 and let P = δ({q}, 00) =
{q−1, q0}; we have q0 ≺00 q−1 on this set since there is a run from the initial state
q to q−1 that sees the accepting state q−1 after inputting the second 0, while all
runs from q to q0 on 00 do not visit an accepting state right after inputting the
second 0.

Remark 1. The preorder �u in Definition 8 shares the same idea of comparing
the maximal runs with the lexicographical order of vertices at the same level of
the run direct acyclic graph (DAG) over an ω-word w used in [10]; see [18, Ap-
pendix B] for a detailed comparison between their and our works. The difference
between our work and the work in [10] is that the latter applies this idea to
Slice-based [12] and Rank-based complementation algorithms [16] while ours is
designed for RBC. A similar idea was also used in [9] for determinizing NBAs.

As an immediate consequence of Definition 8, given two states q, r ∈ δ(I, u)
such that q �u r, we have that a run from an initial state to q that visits an
accepting state mandates that there must be a run from an initial state to r that
also visits accepting states.



Corollary 1. Let q, r ∈ δ(I, u), with q �u r. Then ιq
u
=⇒q for some initial state

ιq ∈ I implies ιr
u
=⇒r for some initial state ιr ∈ I.

Let P = δ(I, u). The preorder �u defines a partition of P in which states in
the same set are equivalent under �u. By abuse of terminology, we call the set
[r]�u = { r′ ∈ P | r′ 'u r } the equivalence class of r ∈ P under �u; we denote
by P/�u the set of all such equivalence classes. Since every two states q, r ∈ P
are comparable under �u, we define the maximal equivalence class of P under
�u as max�u(P ) = max(P/�u) = { r ∈ P | r′ �u r for all r′ ∈ P }; moreover,
the equivalence classes in P/�u can be linearly ordered by [r]�u Eu [r′]�u ⇐⇒
r�ur′; so we have [r]�u /u [r′]�u if [r]�u Eu [r′]�u and [r′] 6Eu [r]�u . Here Eu is
a partial order, not a preorder, which implies that [r]�u = [r′]�u if and only if
[r]�u Eu [r′]�u and [r′]�u Eu [r]�u . In the remainder of this section, by abuse
of terminology, we just use P/�u to denote the preordered set of equivalence
classes of P under �u, i.e., P/�u not just represents a set of equivalence classes
but also linearly orders those equivalence classes with Eu.

An interesting property of the states A visits on the maximal runs from the
initial states I to a state q ∈ δ(I, uv) over the finite word uv is that they are
step by step all equivalent under the preorder with respect to the prefix of uv.
Let max(Πuv,q)|u = {π[|u|+ 1] | π ∈ max(Πuv,q) }, i.e., the set of states reached
from the initial states after inputting u on the maximal runs to q over uv.

Lemma 8. Given u, v ∈ Σ∗ and q ∈ δ(I, uv), let [p]�u = max�u{ [p′]�u ∈
δ(I, u)/�u | p′

v−→q }. Then for each q′ ∈ [q]�uv , max(Πuv,q′)|u ⊆ [p]�u .

By definition of [q]�uv , all the maximal runs from the initial states to the states
in [q]�uv have the same image under 1F . As a consequence, the states on these
runs reached after reading u must belong to the same equivalence class [p]�u
under �u, which is also the maximal equivalence class under �u that reaches
[q]�uv . If this would not be the case, then we would be able to find runs to [q]�uv
greater than the current maximal runs by visiting [p]�u .

A useful property of these maximal runs is that they share visits to accepting
states; more precisely, if one of the maximal runs on a word uv to a state q1 ∈
[q]�uv visits an accepting state while reading v, then so do all other maximal
runs on the same word to some other state q2 ∈ [q]�uv . The motivation for this
is again the maximality of the runs: if one run visits an accepting state while
another does not, then the former is greater than the latter, which implies that
the latter cannot be maximal. This property is formalized below.

Lemma 9. Let u, v ∈ Σ∗ and q ∈ δ(I, uv). For each q1, q2 ∈ [q]�uv , p1 ∈
max(Πuv,q1)|u, and p2 ∈ max(Πuv,q2)|u, we have p1

v
=⇒q1 if and only if p2

v
=⇒q2.

Similarly to Lemma 8, a consequence of Lemma 9 is that, for a given finite
word u and q1 'u q2, the maximal runs in max(Πu,q1) and in max(Πu,q2) visit
accepting states at the same moment, i.e., they have the same image under 1F .

The preorder �u enjoys several properties about the states and maximal runs
of A for the given finite word u. Thus, instead of tracing only the set of reachable



states, as done by the right congruence vi (cf. Definition 6), we also trace the
reachable states δ(I, u) with the preorder �u to get the right congruence vo.

Definition 9 (RC vo). For u1, u2 ∈ Σ∗, we have u1 vo u2 if and only if
δ(I, u1)/�u1 = δ(I, u2)/�u2 .

Example 2. Consider again the NBA Bn depicted in Fig. 2: we can represent
δ(I, 00)/�00 as the ordered sequence of sets 〈{q0}, {q−1}〉 since we have {q0} /00
{q−1}. Analogously, δ(I, 000)/�000

can also be represented as 〈{q0}, {q−1}〉 while
δ(I, 001)/�001

as 〈{q−1}〉. We can see that 00 vo 000 since δ(I, 00)/�00
=

δ(I, 000)/�000
= 〈{q0}, {q−1}〉 while 000 6vo 001 as δ(I, 001)/�001

= 〈{q−1}〉.

Since each equivalence class [u]vo , u ∈ Σ∗, can be uniquely encoded as the
set δ(I, u)/�u , i.e., an ordered sequence of sets over Q, by [10] we have that the
number of possible ordered sequences of sets over Q is O(( n

e lnn )n) ≈ (0.53n)n ≤
nn. Thus we have the following upper bound for vo, so it is of finite index.

Lemma 10. Let vo be the right congruence in Definition 9. Then |vo| ≤ nn.

Given their definitions, it is clear that vi is coarser than vo, thus |vi| ≤ |vo|.
Nonetheless, the right congruence vo allows us to define a novel right congruence
relation ≈ou of index 2O(n logn), for a given u ∈ Σ∗.

Definition 10 (RC ≈ou). Given u, v1, v2 ∈ Σ∗, we say v1 ≈ou v2 if and only if
(1) uv1 vo uv2 and (2) for all states q ∈ P ′, for S1 = max�u{ [p]�u ∈ P/�u |
p
v1−→q } and S2 = max�u{ [p]�u ∈ P/�u | p

v2−→q }, we have (i) S1 = S2 and (ii)

p1
v1==⇒q for p1 ∈ max(Πuv1,q)|u if and only if p2

v2==⇒q for some p2 ∈ max(Πuv2,q)|u
where P = δ(I, u) and P ′ = δ(I, uv1) = δ(I, uv2).

Note that the equality δ(I, uv1) = δ(I, uv2) holds because, under the assump-
tion uv1 vo uv2, we have that the sets of equivalence classes δ(I, uv1)/�u1 and
δ(I, uv2)/�u2 are equal according to the definition of vo, which then implies
that δ(I, uv1) and δ(I, uv2) must be equal as well.

Definition 10 formalizes the following idea for recognizing the ω-words ac-
cepted and rejected by A. Since we want to use (vo,∪u∈Σ∗{≈ou}) to charac-
terize L(A) and Σω \ L(A), i.e., to establish its saturation lemma in line with
v (cf. Lemma 4) and (vi,∪u∈Σ∗{≈u}) (cf. Lemma 7), under the assumption
that uv1 vo u and u vo uv2, we need to guarantee that if v1 ≈ou v2, then
uvω1 ∈ L(A) if and only if uvω2 ∈ L(A). To achieve this, the first condition we
impose (cf. Item (1) of Definition 10) is to visit infinitely often the same states
over the ω-words uvω1 and uvω2 , so we require uv1 vo uv2. The second condi-
tion is to guarantee that the images under 1F of the maximal runs over uvk1
and uvk2 , k ≥ 1, either both contain only 0s, or both contain some 1; by this,
when extending to infinite words, the images of uvω1 and uvω2 under 1F will both
have infinitely many 1s or none of them does. This ensures that uvω1 ∈ L(A)
if and only if uvω2 ∈ L(A). To guarantee having the property above, we first
require that the maximal equivalence classes from each state q ∈ δ(I, u) over



both finite words v1 and v2 have to be the same (cf. Condition (2)-(i), together
with Lemma 8); then, we demand that they share the visits to accepting states
(cf. Condition (2)-(ii) and Lemma 9).

Example 3. Consider again Example 1 and let u = ε, v1 = 00, and v2 = 000. We
now check whether 00 ≈oε 000. Clearly ε · 00 vo ε · 000 since 00 vo 000. We can
represent δ(I, ε)/�ε as 〈{q}〉, a singleton, hence, we have S1 = S2 = {q}, thus
we satisfy Condition (2)-(i) of Definition 10. To fulfill Condition (2)-(ii), we first
have P ′ = {q−1, q0}. We also have max(Πε·00,q−1) = {qq0q−1}, max(Πε·00,q0) =
{qq0q0}, max(Πε·000,q−1) = {qq0q−1q−1}, and max(Πε·000,q0) = {qq0q0q0}. For
state q−1 ∈ P ′, Condition (2)-(ii) is satisfied since qq0q−1 and qq0q−1q−1 both
visit accepting states. For state q0 ∈ P ′, Condition (2)-(ii) is also fulfilled as qq0q0
and qq0q0q0 both visit accepting state q. Therefore, we conclude that 00 ≈oε 000
holds. Clearly 000 6≈oε 001 since we already know that ε · 000 6vo ε · 001.

As desired before Definition 10, the index of ≈ou is indeed in 2O(n logn).

Lemma 11. Given u ∈ Σ∗, let ≈ou be the right congruence from Definition 10.
Then |≈ou| ≤ nn × (n+ 1)n × 2n ∈ 2O(n logn).

The upper bound for |≈ou| derives from the encoding we use for [v]≈ou . [v]≈ou is
mapped to the pair 〈δ(I, uv)/�uv , f〉 where the function f keeps track of the
satisfaction of the states q ∈ Q of the conditions in Definition 10, i.e., whether
q ∈ δ(I, uv) and whether Conditions (2)-(i) and (2)-(ii) are satisfied for such
states. The codomain of f has size 2n + 1 < 2(n + 1), so the possible different
functions f are (2(n + 1))n = 2n × (n + 1)n, while by [10] the possible sets
δ(I, uv)/�uv are nn, hence |≈ou| ≤ nn × (n+ 1)n × 2n ∈ 2O(n logn).

Similarly to Lemma 4, if we restrict ourselves to DBAs, then |≈ou| is expo-
nentially better than the bound 2O(n logn) we have for general NBAs.

Lemma 12. Let A be a DBA with n states. Then Σ[u]vo∈Σ∗/vo |≈ou| ∈ O(n2).

This result follows from the fact that, A being deterministic, there are at most n
classes [u]vo ∈ Σ∗/vo . By taking the same encoding as in Lemma 11, this time
the index of ≈ou is at most 2n, and so the result follows.

Similarly to the other (right) congruence relations we considered, i.e., v
(cf. Lemma 4) and (vi,∪u∈Σ∗{≈u}) (cf. Lemma 7), (vo,∪u∈Σ∗{≈ou}) also enjoys
its saturation lemma. As stated below, (vo,∪u∈Σ∗{≈ou}) is able to recognize
exactly L(A) and Σω \ L(A); a core property to obtain this is again that the ω-
languages [u]vo [v]ω≈ou are included either in L(A) or in its complement Σω\L(A).

Lemma 13 (Saturation Lemma for (vo,∪u∈Σ∗{≈ou})).

1. For u ∈ Σ∗ and v ∈ Σ+, if uv vo u, then either [u]vo [v]ω≈ou ∩ L(A) = ∅ or
[u]vo [v]ω≈ou ⊆ L(A).

2. Σω =
⋃{ [u]vo [v]ω≈ou | [u]vo ∈ Σ∗/vo ∧ [v]≈ou ∈ Σ+/≈ou ∧ uv vo u }.

3. Σω \ L(A) =
⋃{ [u]vo [v]ω≈ou | [u]vo ∈ Σ∗/vo ∧ [v]≈ou ∈ Σ+/≈ou ∧ uv vo

u ∧ [u]vo [v]ω≈ou ∩ L(A) = ∅ }.



The proof for this saturation lemma follows the same steps as for the other two
saturation lemmas, with the appropriate adaptations that take into consideration
the differences in the definitions of the right congruences.

Remark 2. In their work [21], Sistla et al. constructed an NBA Bu,v for each
proper language Yu,v = [u]v[v]ωv such that Yu,v ∩ L(A) = ∅. Each Bu,v can be
constructed with two copies of the DFA M[v] induced by v (cf. Definition 1),
where the first copy processes the finite prefix u while the second copy is modi-
fied to accept the word vω. According to [21], the resulting NBA Ac has 3O(n2)

states. Breuers et al. [5] also proposed a subset construction for improving RBC
for complementing NBAs; in particular, they used the subset construction to
process the finite prefix u of a UP-word uvω in Σω \ L(A). On the other hand,
they still used the classical congruence relation v for recognizing the periodic
word v of uvω. Differently from the algorithms proposed in [5,21], we exploit the
right congruences ≈u or ≈ou instead of the congruence v for accepting the period
v of uvω; this can result in a considerable decrease of the index of the relation
(cf. Theorem 3), which influences the number of states of the automata we build
from these relations. The part for accepting v in [5] has also been optimized with
a preorder and its size is also reduced to 2O(n logn). While leading to the same
upper bound, there is a difference on the automata needed to process the period
v: for a given u, the construction given in [5] uses more than one automaton for
recognizing v; instead, our approach needs one automaton, because the equiva-
lence class [u]vo of vo only relates with one right congruence relation ≈ou. This
allows us to represent (vo,∪u∈Σ∗{≈ou}) as an FDFA, as we explain in Section 5.

5 Connection to FDFAs

In this section, we highlight the deep connection between the congruence rela-
tions of NBAs and FDFAs. This connection allows us to use the right congruences
(vo,

⋃
u∈Σ∗{≈ou}) we introduced in Section 4 to construct an FDFA F with op-

timal complexity that accepts Σω \ L(A). As a byproduct of this connection,
we are able to prove Theorem 7; in other words, one cannot find congruence
relations of index less than 2O(n logn) that recognize Σω \ L(A).

We now introduce the construction of FDFAs from the right congruences.
Since vo (resp., vi) and ≈ou (resp., ≈u) with u ∈ Σ∗ are right congruences of
finite index, by means of Definition 1 they can be used to define the transition
structures of the DFAs of an FDFA F recognizing Σω \ L(A). Moreover, by
Lemma 13 (resp., Lemma 7), we can identify the accepting macrostates of the
progress DFAs. We now give the construction of the FDFA F with vo and ≈ou.
The construction of the FDFA with vi and ≈u is similar.

Definition 11. The FDFA F is a tuple (M[vo], {Nu[≈ou]}) where

– M[vo] is the DFA induced by vo according to Definition 1;
– for each macrostate [u]vo ofM[vo], the progress DFA Nu[≈ou] is constructed

as in Definition 1 parameterized with ≈ou. The accepting macrostates of



Nu[≈ou] are the equivalence classes [v]≈ou of ≈ou such that uv vo u and
[u]vo [v]ω≈ou ∩ L(A) = ∅.

The FDFA constructed according to Definition 11 has the desired properties
we are looking for: it accepts Σω \ L(A) and has only 2O(n logn) macrostates.

Theorem 5. Let F be the FDFA constructed from A in Definition 11. Then
(1) UP(F) = UP(Σω \ L(A)); (2) F is saturated; and (3) F has 2O(n logn)

macrostates.

The three results stated in Theorem 5 follow by the definition of F and the prop-
erties of (vo,

⋃
u∈Σ∗{≈ou}): Result (1) is a direct consequence of Definition 11;

Result (2) is implied by the saturation lemma for (vo,
⋃
u∈Σ∗{≈ou}) (cf. Item

(1) of Lemma 13); and Result (3) by the indexes of (vo,
⋃
u∈Σ∗{≈ou}) and the

construction of the DFAs of F . It is easy to see that one can also construct an
FDFA accepting L(A) by setting the accepting macrostates of Nu[≈ou] to be the
equivalence classes [v]≈ou such that uv vo u and [u]vo [v]ω≈ou ∩ L(A) 6= ∅.

We are now able to formalize the optimality of our FDFA construction of F
based on (vo,

⋃
u∈Σ∗{≈ou}). The upper bound is due to Theorem 5; the matching

lower bound comes from the well-known fact [23] that there exists a family of
NBAs {An}n∈N whose complementary NBAs {Acn}n∈N have 2Ω(n logn) states,
so the same lower bound must hold for FDFAs since there are polynomial-time
translations from FDFAs to NBAs (cf. Lemma 1).

Theorem 6. The construction of FDFAs in Definition 11 with the right con-
gruence relations (vo,

⋃
u∈Σ∗{≈ou}) from A is asymptotically optimal.

Remark 3. Here we discuss related works on FDFAs. As mentioned before, there
are polynomial-time translations from FDFAs to NBAs [3,7]. The opposite trans-
lation is more challenging: the direct translations from an n-states NBA, pro-
posed in [7] and in [13], produce an FDFA with O(4n

2+n) states and an FDFA

with O(3n
2+n) states, respectively. Our construction in Definition 11 replaced

with (vi,
⋃
u∈Σ∗{≈u}) can even be exponentially better than these two trans-

lations; due to lack of space, the detailed reasoning can be found in [18, Ap-
pendix C]. The translation based on an intermediate determinization of NBAs
to deterministic Parity automata given in [3] also yields an FDFA with the opti-
mal complexity 2O(n logn). Our construction (cf. Definition 11), however, is the
first direct and optimal translation from an NBA to an FDFA without involving
determinization of NBAs. Like in [13], our congruence relation-based translation
also reveals that FDFAs are actually being applied in the language-containment
checking of NBAs (cf. [1, 2, 11]). The specialized translation for DBAs proposed
in [3] can be used to convert a DBA A with n states to a saturated FDFA F ′
with n + n × 2n ∈ O(n2) macrostates such that UP(F ′) = UP(Σω \ L(A));
we remark that our construction for FDFAs in Section 5 degenerates to their
construction when the given NBA A is deterministic. Given an ω-regular lan-
guage L, Angluin and Fisman [4] directly operate on the language L and give
congruence relations for constructing FDFAs of L. In contrast, our work takes



an NBA A as input and defines congruence relations for recognizing Σω \ L(A)
based on the transitions of A.

We now formalize the main result of this paper as Theorem 7, which is a
direct consequence of Theorem 6 since the constructed FDFA has the same
number of macrostates as the index the congruence relations (vo,

⋃
u∈Σ∗{≈ou})

(cf. Definition 11).

Theorem 7. The right congruence relations (vo,
⋃
u∈Σ∗{≈ou}) given in Defi-

nitions 9 and 10, respectively, are asymptotically optimal among all right con-
gruence relations (v,

⋃
u∈Σ∗{≈u}) such that for each u ∈ Σ∗ and v ∈ Σ+, if

uv v u, then either [u]v[v]ω≈u ∩ L(A) = ∅ or [u]v[v]ω≈u ⊆ L(A).

6 Concluding Remarks

In this work, we considered congruence relations for NBAs and we have proposed
coarser relations than the classical one; we have further given asymptotically
optimal right congruences for NBAs. To the best of our knowledge, we have given
the first direct translation from an NBA to an FDFA with optimal complexity,
based on our optimal right congruences.

We have shown that congruence relations relate tightly the classical RBC and
FDFAs. Congruence relations are known to be able to yield the minimal DFAs for
given regular languages by the Myhill-Nerode Theorem, by identifying equivalent
states [19, 20]. The classical congruence relation v has already been exploited
to avoid exploration of redundant states, which explains why RBC is suitable
for developing state-space pruning techniques [1,2,11]. We believe that the con-
gruence relations we introduced in this work may further enable the reduction
of the state space in practical NBA complementation construction. In future
work, we plan to study whether subsumption and simulation techniques, simi-
lar to the ones developed in [1, 2] for the classical congruence relation, can also
be proposed for our right congruences, in the context of language-containment
checking between two NBAs.

As mentioned in the introduction, formal verification based on NBAs is
PSPACE-complete, which is computationally expensive. An alternative and also
cheaper method is to model the system and the specification as FDFAs, so that
the model-checking problem can be reduced to a containment problem between
two FDFAs, which can be done in polynomial time [3]. We believe that our work
benefits the community with a deep understanding of the relationship between
NBAs and FDFAs, which may help with the modelling of systems as FDFAs and
enhance the possibility of the use of FDFAs in formal verification.
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