
Towards a Grand Unification of
Büchi Complementation Constructions

Moshe Y. Vardi1, Seth Fogarty2, Yong Li3 and Yih-Kuen Tsay4

1 Department of Computer Science, Rice University
2 Department of Computer Science, Trinity University

3 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

4 National Taiwan University

Abstract. The complementation construction for nondeterministic word
automata has numerous applications in formal verification. In particular,
the language-containment problem, to which many verification problems
are reduced, involves complementation. For automata on finite words,
which correspond to safety properties, complementation is typically done
by determinization using the subset construction. For Büchi automata
on infinite words, which are required for the modeling of liveness prop-
erties, optimal complementation constructions are quite complicated, as
the subset construction is not sufficient. Over the years, three different
constructions have been developed for Büchi complementation, based on
congruence relations (via Ramsey analysis), progress ranks, and profiles.
In this work we unify the three constructions, by showing how profiles
can also yield both optimal congruence relations and progress ranks.

1 Introduction

Complementation of nondeterministic word automta is a fundamental opera-
tion for both the automata-based model checking [40] and program termination
checking [14]. In particular, in the automata-based model checking [40] frame-
work, the verification problem of whether the behavior of a system A satisfies a
specification B reduces to a language-containment problem between the corre-
sponding automata modelling A and B, which is then reduced to the intersec-
tion of A and the complement of B. For verifying safety properties, automata
on finite words [22] are sufficient, while for liveness properties, nondeterminis-
tic Büchi automata on infinite words (NBWs) [6], are usually utilized [40], as
verification requires to represent the properties of nonterminating systems with
infinite-length behaviors. This work focuses on the complementation of NBWs.

It is known that for automata on finite words, complementation involves
determinization via the standard subset construction [18]. For NBWs, however,
optimal complementation constructions are quite complicated, as the subset con-
struction is not sufficient [34]. NBWs were originally proposed to prove the de-
cidability of a restricted monadic second-order logic [6]. In this work [6], Büchi
formulated the first proof of the existence of a complementary NBW implicitly

using second-order formulae. Büchi’s idea for complementation relies on a con-
gruence relation and one can associate each equivalence class of the congruence
relation with a state of the complementary automaton, similarly to the char-
acterization provided by the Myhill-Nerode theorem for regular languages [18].
Due to the use of Ramsey’s theorem in the proof, Büchi’s complementation is
widely referred to as Ramsey-based Büchi complementation. In this work, we
will refer Büchi’s complementation to as the congruence-based construction be-
cause it is defined with congruence relations. The congruence-based construc-
tion was later improved by Sistla et al. in 1987 with a blow-up of 2O(n2) [34].
In 1988, Safra described a 2O(n logn) complementation [32], widely known as the
determinization-based complementation, matching the lower bound 2Ω(n logn)

established by Michel [27]. Work on complementation since then has focused on
either providing simpler complementation algorithms with optimal complexity
2O(n logn), such as rank-based complementation [22] and slice-based complemen-
tation [19], or further tightening the lower and upper bounds [33,41].

Over the past few decades, there are mainly three types of complementation
constructions that have been actively studied, namely the congruence-based (al-
ternatively Ramsey-based) [32,5,14,13,1,2,24], rank-based [22,16,15,20,33,12,8,17],
and slice-based [19,12,36,3] constructions. Existing direct complementation con-
structions, in contrast to those going through determinization, all fall into one of
the three types. The core idea of a complementation construction for NBWs is
to identify the set of words rejected by the input NBW. To that end, rank-based
constructions rely on progress ranks [21], while slice-based constructions were
originally based on the construction of reduced split trees. In [12], the rank-
based construction and slice-based construction are unified with a profile-based
analysis, yielding a construction based on retrospective ranking.

Both rank-based and slice-based complementation constructions are based
on tracking the (reduced) run DAG of an ω-word and determine whether the
corresponding ω-word is accepted. Both constructions see an ω-word as a whole,
while the congruence-based construction decomposes an ω-word into a finite pre-
fix and a periodic finite word. This is why the congruence-based approach seems
difficult to be related or unified with the rank-based and slice-based construc-
tions so far. In this work, we further show that the profile-based analysis can also
be applied to the congruence-based construction. This novel insight shows the
connection between profiles and congruences, concluding that the three major
constructions can all be unified based on profiles.

2 Preliminaries

We fix an alphabet Σ, and define a word as a finite or infinite sequence of let-
ters from Σ. Let Σ∗ and Σω denote the set of all finite and infinite words (or
ω-words), respectively. A finitary language is a subset of Σ∗; an ω-language is a
subset of Σω. Let L be a finitary language (resp., ω-language); the complemen-
tary language of L, written as L, is Σ∗\L (resp., Σω\L). Let ρ be a sequence; we
denote by ρ[i] the i-th element of ρ, and by ρ[i..k] the subsequence of ρ starting

2

at the i-th element and ending at the k-th element, inclusively. When i > k,
then ρ[i..k] is taken to be the empty sequence ε. We denote by |ρ| the number of
elements in ρ. We denote by [m] the set {0, · · · ,m−1} for m > 0. Given a finite
word u and a word w, we denote by u ·w (uw, for short) the concatenation of u
and w. Given a finitary language L1 and a finitary/ω-language L2, the concate-
nation L1 ·L2 (L1L2, for short) of L1 and L2 is the set {u ·w | u ∈ L1, w ∈ L2 }
and Lω1 the infinite concatenation of L1.

Automata. A (nondeterministic) automaton is a tuple A = (Q, I, δ, F), where
Q is a finite set of states, I ⊆ Q is a set of initial states, δ : Q × Σ → 2Q is
a transition function, and F ⊆ Q is a set of accepting states. We extend δ to
sets S ⊆ Q of states, by letting δ(S, a) =

⋃
q∈S δ(q, a). We also extend δ to

finite words, by letting δ(S, ε) = S and δ(S, a1a2 · · · ak) = δ(δ(S, a1), · · · , ak) for
k ≥ 1. When running on finite words, an automaton is called a nondeterministic
automaton on finite words (NFW), while an automaton on ω-words is called a
nondeterministic Büchi automaton on infinite words (NBW). An automaton A
is said to be deterministic if |I| = 1 and, for each q ∈ Q and a ∈ Σ, it holds that
|δ(q, a)| ≤ 1; when considered on finite words, A is called a DFW, while in the
context of infinite words, it is called DBW.

A run of an NFW/NBW A on a finite word u of length n ≥ 0 is a sequence
of states ρ = q0q1 · · · qn ∈ Q+, such that q0 ∈ I and qi ∈ δ(qi−1, u[i]) for every
0 < i ≤ n. A finite word u ∈ Σ∗ is accepted by an NFW A if there is a run
q0 · · · qn over u such that qn ∈ F . Similarly, an ω-run of an NBW A on an ω-
word w is an infinite sequence of states ρ = q0q1 · · · such that q0 ∈ I and, for
every i > 0, qi ∈ δ(qi−1, w[i]). Let Inf(ρ) be the set of states that occur infinitely
often in the run ρ. An ω-word w ∈ Σω is accepted by an NBW A if there is an
ω-run ρ of A over w such that Inf(ρ) ∩ F 6= ∅. The finitary language recognized
by an NFW A, denoted by L∗(A), is defined as the set of finite words accepted
by it. Similarly, we denote by L(A) the ω-language recognized by an NBW A,
i.e., the set of ω-words accepted by A. The complementation construction of A
is to construct an NBW that accepts the complementary language of A, i.e.,
L(A). We note that the index of words starts with 1, in contrast to 0 for other
sequences, such as runs.

Directed acyclic graphs of runs (or run DAGs) were proposed by Kupferman
and Vardi in [23] for reasoning about all runs of an NBW on a given ω-word w.
Let A = (Q, I, δ, F) be an NBW and w be an ω-word. The run DAG Gw = 〈V,E〉
of A over w is defined as follows:

– The vertices V ⊆ Q× N is the set { 〈q, l〉 | l ∈ N, q ∈ δ(I, w[1..l]) }.
– Edges: There is an edge from 〈q, l〉 to 〈q′, l′〉 if l′ = l+ 1 and q′ ∈ δ(q, w[l′]).

A vertex 〈q, l〉 is said to be on level l; note there are at most |Q| states on each
level. A vertex 〈q, l〉 is called an F -vertex if q ∈ F . A finite (infinite) sequence
of vertices ρ̂ = 〈q0, 0〉〈q1, 1〉 · · · is called a branch (resp. ω-branch) of Gw when
for each 0 ≤ l < k (resp. 0 ≤ l), there is an edge from 〈ql, l〉 to 〈ql+1, l + 1〉.

A vertex 〈qj , j〉 is reachable from 〈ql, l〉 if there is a path from 〈ql, l〉 to 〈qj , j〉.
We call a vertex 〈q, l〉 finite in Gw if it is not on an ω-branch; we call a vertex

3

〈q, l〉 F -free if it is not finite and no F -vertices are reachable from 〈q, l〉 in Gw.
To a run ρ = q1q2 · · · of A over w corresponds an ω-branch ρ̂ = 〈q0, 0〉〈q1, 1〉 · · · .
Therefore, w is accepted by A iff there is an ω-branch in Gw visiting F -vertices
infinitely often; such an ω-branch is said to be accepting. Gw is accepting iff there
is an accepting ω-branch in Gw.

3 Complementation via Profiles

In this section we present the profile-based complementation algorithm intro-
duced in [12], which is an alternative presentation of the slice-based complemen-
tation construction [19]. This construction uses a notion of profiles for the run
DAGs, defined first over branches and then over vertices.

3.1 Profiles

Fix a run DAG Gw = 〈V,E〉 of an NBW A = (Q, I, δ, F) over a word w ∈ Σω.
Let fF : V → {0, 1} be such that fF (〈q, i〉) = 1 if q ∈ F and fF (〈q, i〉) = 0
otherwise. Thus, fF labels F -vertices by 1 and all other vertices by 0. We first
define the profile of a branch in Gw as the sequence of labels of vertices in the
branch. For a finite branch b = v0v1 . . . vn in Gw, define the profile of b, written
as hb, to be fF (v0)fF (v1) · · · fF (vn). For an ω-branch b = v0v1 . . ., its profile
is hb = fF (v0)fF (v1) · · · . We next define the profile of a vertex in Gw to be
the lexicographically maximal profile of all branches that end in that vertex.
Formally, let ≤ be the lexicographic ordering on {0, 1}∗ ∪ {0, 1}ω such that
hb < hb′ if there is a prefix α0 of hb and α1 is a prefix of hb′ . We then say that
hb is lexicographically smaller than hb′ . Finally, the profile of a vertex v, written
as hv, is the lexicographically maximal element of {hb | b is a branch to v }.

The lexicographic order of profiles induces a preorder over the vertices/states
on the same level. The sequence of preorders �i over the vertices/states on level
i ≥ 0 of Gw are defined as follows.

Definition 1 (Preorder �i). For every two vertices u and v on level i ≥ 0 in
Gw, we have that u ≺i v if hu < hv, u �i v if hu ≤ hv and u ≈i v if hu = hv.

By abuse of terminology, we can conflate vertices on level i of Gw with their
underlying states and say q �i r when 〈q, i〉 �i 〈r, i〉.

One can verify that every two vertices/states on level i are comparable under
�i by definition. We also use the preorder �i over states in Sects. 3.2 and 5.2.
As �i is transitive, ≈i is an equivalence relation.

For a vertex v on level i, its equivalence class under ≈i is denoted as [v]≈i
, or

simply [v] when it is clear from the context. Since the last element of a vertex’s
profile is 1 iff the vertex is an F -vertex, all vertices in an equivalence class of ≈i
must agree on membership in F . We call an equivalence class an F -class when
all its members are F -vertices, and a non-F -class when none of its members is
an F -vertex.

4

We now use profiles in order to remove from Gw edges that are not on lexico-
graphically maximal branches. Let G′w = 〈V,E′〉 be the subgraph of Gw induced
by removing all edges (u, v) where there is an edge (u′, v) such that u ≺|u| u′.

Intuitively, we only keep the ω-branch with the maximal profile among the
ω-branches that join together in the pruned run DAG G′w. Observe that the
removal of such edges does not change the profiles of vertices, and further that
vertices derive their profiles from their parents in G′w, as formalized here:

Lemma 1 ([12]). For every two vertices u and v in G′w (and hence Gw), if
(u, v) ∈ E′, then hv ∈ {hu0, hu1}.

While it is possible for two vertices with different profiles to share a child in
Gw, Lemma 1 precludes this possibility in G′w. If two vertices join in G′w, they
must have the same profile and be in the same equivalence class. We can thus
conflate vertices and equivalence classes, and for every edge (u, v) ∈ E′, consider
the equivalence class [v] of v to be the child of the equivalence class [u] of u.
Lemma 1 then entails that the class [u] can have at most two children: the class
of F -vertices with profile hu1, and the class of non-F -vertices with profile hu0.
We call the first class the F -child, and the second class the non-F -child of [u].

By using lexicographic ordering we can derive the preorder for level i +
1 of Gw solely from the preorder for the previous level i. To determine the
ordering relation between two vertices, we need only know the relation between
the parents of those vertices, and whether the vertices are F -vertices. Formally:

Lemma 2 ([12]). For vertices u, v on level i, and vertices u′, v′ where (u, u′) ∈
E′ and (v, v′) ∈ E′ hold in G′w, we have:

– If u ≺i v, then u′ ≺i+1 v
′.

– If u ≈i v and either both u′ and v′ are F -vertices, or neither are F -vertices,
then u′ ≈i+1 v

′.
– If u ≈i v and v′ is an F -vertex while u′ is not, then u′ ≺i+1 v

′.

We guarantee the correctness of the pruning on Gw with Lemma 3: an accept-
ing ω-branch can only be pruned when it joins with another accepting ω-branch.
Therefore we still capture an accepting ω-branch in G′w for an accepting run
DAG Gw, as justified by Lemma 3.

Lemma 3 ([12]). G′w has an accepting branch iff Gw has an accepting branch.

As a further step of pruning, we remove from G′w all finite vertices. Let
G′′w = G′w \ { v | v is finite in G′w }. Note there may be vertices that are not
finite in Gw but are finite in G′w. An important observation is that Gw may have
infinitely many F -vertices, and still not contain an accepting branch: there may
be infinitely many branches each with a finite number of F -vertices. Lemma 4
demonstrates that the transition from Gw via G′w to G′′w removes this possibility,
and the presence of infinitely many F -vertices in G′′w does imply the existence of
an accepting branch.

5

Lemma 4 ([12]). Gw has an accepting ω-branch iff G′′w has infinitely many F -
vertices.

The property of G′′w in Lemma 4 is vital for the profile-based complementation
construction, as shown in Sect. 3.2.

3.2 Complementing with Profiles

We now complement the Büchi automaton A = (Q, I, δ, F) by constructing an
NBW Bp that employs Lemma 4 to determine if an ω-word w is in L(A). The
NBW Bp constructs G′w level by level, while guessing which vertices are finite
in G′w and therefore not present in G′′w. To build G′w, Bp encodes each level as a
set S of states that occurs on the level. Every such set S is labeled with a guess
of which vertices are finite and which are infinite. States that are guessed to be
infinite, which are thus kept in G′′w, are labeled >. States that are guessed to
be finite, which are thus omitted from G′′w, are labeled ⊥. In order to track the
edges of G′w, Bp needs to know the lexicographic order of vertices. Thus Bp also
maintains the preorder �i as in Definition 1 over states on the corresponding
level of G′w. To verify whether states labeled ⊥ are indeed finite, Bp utilizes the
cut-point construction of Miyano and Hayashi [28], keeping an “obligation set”
of states currently being verified as finite. Finally, to ensure that w is rejected
by A, Bp enforces that there are finitely many F -vertices in G′′w, using a bit b to
guess the level from which no more F -vertices appear in G′′w. From this point on,
it enforces that all F -vertices are labeled ⊥.

Before we define Bp, we formalize preordered subsets in Definition 1 and
operations over them. For a set Q of states, we define Q = { 〈S,�〉 | S ⊆
Q } to be the set of preordered subsets of Q where � is a preorder over S.
Note that we write �i as � here since the level number can be omitted. Let
〈S,�〉 be an element in Q. When considering the successors of a state, we only
consider edges that remain in G′w. Formally, for every state q ∈ S and σ ∈ Σ,
define ρ〈S,�〉(q, σ) = {r ∈ δ(q, σ) | for every q′ ∈ S, if r ∈ δ(q′, σ) then q′ � q}.
Intuitively, ρ〈S,�〉(q, σ) defines the set of states at the next level in G′w that can
be reached by q.

Definition 2. We define the σ-successor of 〈S,�〉 as the tuple 〈δ(S, σ),�′〉, de-
noted as 〈δ(S, σ),�′〉 = T (〈S,�〉, σ), where for every q, r ∈ S, q′ ∈ ρ〈S,�〉(q, σ),
and r′ ∈ ρ〈S,�〉(r, σ):

– If q ≺ r, then q′ ≺′ r′.
– If q ≈ r and either both r′ ∈ F and q′ ∈ F , or both r′ 6∈ F and q′ 6∈ F ,

then q′ ≈′ r′.
– If q ≈ r and one of q′ and r′, say r′, is in F while the other, q′, is not,

then q′ ≺′ r′.

One can see that the preorder �′ over δ(S, σ) is exactly the one defined in
Lemma 2 excluding the level number i+ 1.

We now define Bp. The states of Bp are tuples 〈S,�, λ,O, b〉 where: 〈S,�〉 ∈
Q is preordered subset of Q; λ : S → {>,⊥} is a labeling indicating which

6

states are guessed to be finite (⊥) or infinite (>), O ⊆ S is the obligation set,
and b ∈ {0, 1} is a bit indicating whether we have seen the last F -vertex in
G′′w. To transition between states of Bp, say that t′ = 〈S′,�′, λ′, O′, b′〉 follows
t = 〈S,�, λ,O, b〉 under σ when:

1. 〈S′,�′〉 is the σ-successor of 〈S,�〉, i.e., 〈S′,�′〉 = T (〈S,�〉, σ).

2. λ′ is such that for every q ∈ S:

(a) If λ(q) = >, then there exists r ∈ ρ〈S,�〉(q, σ) such that λ′(r) = >,

(b) If λ(q) = ⊥, then for every r ∈ ρ〈S,�〉(q, σ), it holds that λ′(r) = ⊥.

3. O′ =

{⋃
q∈O ρ〈S,�〉(q, σ) O 6= ∅,
{q | q ∈ S′ and λ′(q) = ⊥} O = ∅.

4. b′ ≥ b.

We can see that once b has been set to 1, then b will be 1 forever from this
Bp-state; that is, we guess that all its runs of Bp from this state reach a suffix
where all F -vertices are labeled finite. Thus we also need to exploit a labeling
λ that reflects this guess. To this end, given a Bp-state 〈S,�, λ,O, b〉, we say
that λ is F -free if for every q ∈ S ∩ F we have λ(q) = ⊥. We can now de-
fine the complementation construction, and state its theorem of correctness and
complexity.

Definition 3 ([12]). For an NBW A = 〈Q, I, δ, F 〉, let Bp be the constructed
NBW 〈Qp, Ip, δp, Fp〉 where:

– Qp = { 〈S,�, λ,O, b〉 | if b = 1 then λ is F -free, S ⊆ Q },
– Ip = { 〈I,�, λ, ∅, 0〉 | for all q, r ∈ I, q � r iff q 6∈ F or r ∈ F },
– δp(t, σ) = { t′ | t′ follows t under σ }, and

– Fp = { 〈S,�, λ, ∅, 1〉 | S ⊆ Q }.

Theorem 1 ([12]). Let A be an NBW with n states. Then we have that L(Bp) =

L(A) and Bp has at most (2n)n states.

The correctness proof of Theorem 1 connects runs of Bp with G′w. For a more
precise bound on the size, we note that if n = |Q|, the number of preordered
subsets is roughly (0.53n)n [12]. As there are 2n labellings, and a further 2n

obligation sets, the state space of Bp is at most (2n)n. The slice-based automaton
obtained in [19] coincides with Bp, modulo the details of labeling states and the
cut-point construction. The correctness proof in [19], however, is given by means
of reduced split trees, whereas here we operate directly on the run DAG.

4 Complementation via Ranks

In this section, we present the rank-based complementation construction intro-
duced in [23], and show how profiles can be used as a tool for this construction.

7

4.1 Rank-Based Complementation

Unlike the profile-based algorithm, the original rank-based complementation pro-
posed by Kupferman and Vardi [23] constructs the complementary NBW by
tracking the nonaccepting run DAGs, without pruning.

As shown in [38], checking whether a run DAG Gw is nonaccepting can be
reduced to verifying fair termination; the core idea is that Gw can be viewed as
a fair transition system [39] that fairly terminates if none of its runs satisfies
the fair condition. Let Gw = 〈V,E〉. The corresponding fair transition system is
Mw = (V, I × {0}, E, F × N) where F × N is the fair condition. Clearly, Gw is
nonaccepting iff Mw fairly terminates, i.e., all ω-branches in Gw visit only finitely
many F -vertices.

To identify nonaccepting run DAGs, we use the model checking algorithm
called One-Way-Catch-Them-Young (henceforth OWCTY) [10], an improvement
of the Emerson-Lei algorithm (henceforth EL) [9]. A run DAG Gw can be seen
as a fair transition system M = (W,W0, R, F) = Mw, the input of OWCTY.
Let X,Y ⊆W be two sets of states. We denote by next(X) the states who have
successors in X, i.e., for each state x ∈ next(X), there is a state y ∈ X such that
(x, y) ∈ R. We represent until(X,Y) as the set of states in X that can properly
reach Y while still staying in X. That is, for each state x ∈ until(X,Y), there
is a sequence x0, · · · , xk, k > 0, where xk ∈ Y , xi ∈ X and (xi, xi+1) ∈ R for
0 ≤ i < k. We give the OWCTY version presented in [39] as follows:

Q←W
repeat

repeat
Q← Q ∩ next(Q)

until Q not changed
Q← Q ∩ until(Q,Q ∩ F)

until Q not changed
return (W0 ∩Q = ∅)

Intuitively, the inner loop deletes the states that have only finitely many succes-
sors; such states surely cannot lie on a fair infinite trace (i.e., trace with infinitely
many F -states). The outer loop removes all states that cannot reach accepting
states in F . It is shown in [23] that the outer loop of OWCTY always converges
in at most n iterations when applied to fair transition systems of the form Mw

for an NBW A with n states. Intuitively, each level of Gw has at most n vertices,
and each iteration of the outer loop either halts or removes an infinite trace
with finitely many accepting states. This allows us to assign finite ranks to the
vertices of Gw as follows:

– Assign a vertex v rank 2i if it is deleted in the i-th iteration of the outer
loop by the statement Q← Q ∩ next(Q).

– Assign a vertex v rank 2i+ 1 if it is deleted in the i-th iteration of the outer
loop by the statement Q← Q ∩ until(Q,Q ∩ F).

8

Intuitively, ranks measure the “progress” made by a vertex towards acceptance
[21]. While, in general, transfinite ranks for a fair-transition system are required,
we can use here exactly the ranks 0, · · · , 2n − 2 in the above procedure for a
run DAG of an n-state NBW A, according to [16,23]. Thus, given a run DAG
Gw, we can obtain a function f : V → {0, . . . , 2n − 2} for Gw in terms of ranks
assigned by OWCTY. This is called in [39] the C-ranking of Gw.

We can see that a vertex must be removed by OWCTY no sooner than its
parents in Gw and the F -vertices are always removed in the inner loop. Therefore
the ranks in the C-ranking f along a branch does not increase and F -vertices get
only even ranks. Therefore, it is easy to see that all ω-branches in Gw eventually
get trapped in odd ranks if Gw is nonaccepting. We say that the C-ranking f is
odd if all the ω-branches of Gw eventually get trapped in odd ranks.

Lemma 5 ([23]). A rejects w iff there is an odd C-ranking for Gw.

The odd C-ranking provides a unique way of rank assignments for identifying
nonaccepting DAGs since the described OWCTY operates deterministically on
a given run DAG. When constructing a complementary NBW Br of A, it is
impossible to foresee the precise rank of C-ranking for a vertex in Gw and we
have to guess the ranks level by level while reading the ω-word w. Recall that the
maximum rank for Gw is 2n− 2. So along an input word w, we can encode the
ranking of a level in Gw by utilizing a level-ranking function f : Q→ [2n−2]∪{⊥}
for the states S at a level of Gw such that if q ∈ S ∩ F , then f(q) is even, and
f(q) = ⊥ if q ∈ Q \ S. We denote by R the set of all possible level-ranking
functions. In order to define a valid ranking for the next level, we define the
following coverage relation for level-ranking functions.

Definition 4. Let δ be the transition function of A, σ a letter in Σ and f, f ′

two level-ranking functions. Let α(f) = { q ∈ Q | f(q) 6= ⊥}. We say f covers f ′

under letter σ, denoted by f ′ ≤δσ f , if q′ ∈ δ(α(f), σ), we have 0 ≤ f ′(q′) ≤ f(q)
for every q ∈ α(f) such that q′ ∈ δ(q, σ), otherwise f ′(q′) = ⊥ if q′ /∈ δ(α(f), σ).

The coverage relation indicates that the level-rankings f and f ′ of two consecu-
tive levels of Gw do not increase in ranks on a branch, as aforementioned.

In order to verify whether the guess about the ranking of Gw is correct,
rank-based complementation also uses the cut-point construction in [28]. This
construction employs a set of states O ⊆ Q to check that the vertices assigned
with even ranks are finite. That is, the ranking of a nonaccepting run DAG Gw
eventually gets trapped in odd ranks. The formal definition of Br is given below.

Definition 5 ([23]). Let A = (Q, I, δ, F) be an NBW. We define an NBW
Br = (Qr, Ir, δr, Fr) as follows.

– Qr ⊆ R× 2Q,
– Ir = (f, ∅) where f(q) = 2n− 2 if q ∈ I and f(q) = ⊥ otherwise.
– δr is defined as follows:

1. if O 6= ∅, then δr((f,O), σ) = { (f ′, δ(O, σ) \ odd(f ′)) | f ′ ≤δσ f }

9

2. if O = ∅, then δr((f,O), σ) = { (f ′, even(f ′)) | f ′ ≤δσ f }
– Fr = { (f,O) ∈ Qr | O = ∅ }.

where odd(f) = { q ∈ Q | f(q) is odd } and even(f) = { q ∈ Q | f(q) is even }.

Here in (f,O), f is the guessed level-ranking for the current level and O contains
vertices/states along the branches that have not visited a vertex with an odd
rank since the last time O has been empty. Let w be an ω-word. Intuitively,
every state (f,O) in Br corresponds to a level of the DAG Gw over w. If w
is accepted by Br, i.e., O becomes empty for infinitely many times, then we
conclude that all the ω-branches of Gw eventually get trapped in odd ranks. It
follows that no branches are accepting in Gw, i.e., w /∈ L(A). The other direction
is also easy to prove: since we have guessed all possible rankings of Gw, if Gw is
nonaccepting, then at least one guess will be an odd C-ranking. Clearly, Br will
accept w since odd C-ranking will induce infinitely many Br-states with empty
O. Thus we conclude that L(Br) = Σω \L(A). Since f ∈ R is a function from Q
to [2n−2]∪{⊥}, the number of possible f functions is at most (2n)n. Therefore,
the number of states in A is at most 2n × (2n)n.

Theorem 2 ([23]). Let A be an NBW with n states and Br the NBW defined
in Definition 5. Then L(Br) = L(A) and Br has O((4n)n) states.

With the optimizations proposed in [15,33], the number of states in Br can
be improved to O((0.76n)n), matching the lower bound given in [41].

4.2 Connection between Ranks and Profiles

In this subsection, we introduce a connection between the rank-based construc-
tion and the profile-based construction by defining a retrospective ranking of Gw
based on profiles. We say a level k ≥ 1 is a stable level in G′w if all F -vertices
starting from level k are finite. According to the proof of Lemma 7 in [12], we
have that there is a stable level k ≥ 0 in G′w iff G′w is nonaccepting. The following
lemma is a reformulation of Corollary 10 in [12], adapted to our notations.

Lemma 6 (Adapted from [12]). A does not accept w iff there exists a stable
level k ≥ 0 in G′w.

Recall that we use the labeling function λ in Sect. 3.2 to indicate whether
a vertex in G′w is finite (⊥) or infinite (>) for constructing Bp; the function λ
has to guess the labeling of every vertex in G′w when constructing Bp. With the
existence of the stable level k for a nonaccepting G′w, we do not have to guess
for each vertex but just guess the stable level of G′w. That is, we first guess a
stable level k of G′w and before the stable level k, every vertex is labelled with
>; after the stable level, all F -vertices and their descendants are labeled with ⊥.
We denote this labeling by λk since it is dependent on the stable level k. Let Si
be the set of vertices on level i of Gw. Formally, for i ≥ 0, the labeling function
λk : Si → {>,⊥} is defined as follows:

10

– If i ≤ k, then for every u ∈ Si we define λk(u) = >.
– If i > k, then for every u ∈ Si:
• If u is an F -vertex, then λk(u) = ⊥.
• Otherwise, λk(u) = λk(v), for a vertex v where E′(v, u).

We note that λk is well defined when i > k and u is not an F -vertex, since by
Lemma 1, all its parents in G′ belong to the same equivalence class; so λk(u)
does not depend on the choice of the vertex v where E′(v, u); see [12] for detailed
reasoning. The correctness of this labeling is justified by Lemma 6.

As a byproduct, the constructed NBW has nondeterminism only in the tran-
sition to stable level k, and is deterministic in the limit. Note that the labeling
λk is defined on the edges of G′w rather than on edges of Gw (see E′(v, u) in
the definition above). We say a labeling λk is legal if it correctly labels the fi-
nite/infinite vertices in the run DAG. Based on the definition of λk, Corollary 1
is a direct consequence of Lemma 6.

Corollary 1. Gw is rejecting iff for some k, the labeling λk is legal.

Now we are ready to derive an odd ranking for Gw from the function λk, thus
relating the profile-based analysis behind λk with the rank-based analysis of [23].
We have defined in Sect. 4.1 the C-ranking for Gw such that the C-ranking is odd
iff Gw is nonaccepting. In order to define such a ranking function for identifying
nonaccepting run DAGs, we introduce below the so-called retrospective ranking
for Gw [12]. Unlike C-ranking, which predicts the progress towards the acceptance
in future, retrospective ranking is defined based on the past profiles we have
seen. For the retrospective ranking to be odd for a nonaccepting run DAG Gw,
we only need to care about the ranks of vertices after stable level k in which all
ω-branches get trapped in odd ranks.

Consider again G′w and the labeling λk. We know that after the stable level k,
if λk is legal, an ω-branch with only label > is nonaccepting. So, the retrospective
ranking for Gw after level k, gives odd ranks to >-labeled vertices and even ranks
to ⊥-labeled classes. Here the ranks increase in inverse lexicographic order, i.e.,
we define the rank of the maximal >-labeled class as 1. A good property of this
ranking is that we do not need to distinguish between two adjacent ⊥-labeled
classes. Formally, we have the following k-retrospective ranking for Gw.

Definition 6. Consider a run DAG Gw, k ∈ N, and a labeling λk : Gw →
{>,⊥}. Let m = 2|Q \ F |. For a vertex u on level i of Gw, let α(u) be the number
of >-labeled classes larger than u; α(u) = |{ [v] | λk(v) = > and u ≺i v }|. The
k-retrospective ranking of G′w is the function rk : V → {0..m} defined for every
vertex u on level i as follows.

rk(u) =

m if i ≤ k,

2α(u) if i > k and λk(u) = ⊥,

2α(u) + 1 if i > k and λk(u) = >.

According to Lemma 1, every equivalence class [u] has at most two child
equivalence classes, one F -class and one non-F -class. So, on the same level, each

11

>-labeled class is given the odd rank greater by two than the rank of the next
lexicographically larger >-labeled class. The number of >-labeled classes on each
level is at most m

2 = |Q \ F |. Moreover, since the number of larger >-labeled
classes does not increase, the ranks of child equivalence classes on the next level
are no larger than the rank of their parent. Formally, we have the following.

Lemma 7 ([12]). For a level j ≥ k, we have

– If u ≺j u′ then rk(u) ≥ rk(u′), where u and u′ are two vertices on level j.
– If (u, v) ∈ E′, then rk(u) ≥ rk(v), where u and v are two vertices on level j

and j + 1, respectively.

Thus, the following lemma holds if λk is legal and Gw is nonaccepting, ac-
cording to Lemma 15 of [12].

Lemma 8 ([12]). A does not accept w iff the retrospective ranking rk bounded
by m for Gw is an odd ranking.

4.3 Complementing with Retrospective Rankings

We have introduced in Section 4.2 about how to determine whether w is accepted
by A by defining the retrospective rankings based on the profiles of branches
after the stable level in Gw (cf. Lemma 7). Now we are ready to define the
complementary NBW AL based on the retrospective ranking.

First, we need to guess the stable level in Gw before we can define the ret-
rospective ranking for checking whether the run DAG Gw is accepting. In order
to correctly identify the stable level k for a given run DAG Gw, we partition the
construction of AL into two phases, namely initial phase and ranking phase. In
the initial phase, the NBW AL deterministically tracks all preordered subsets
and we assume all levels in this phase are before the stable level k. Once AL non-
deterministically moves to the ranking phase, we assume that we have reached
the stable level k and need to deterministically track the ranks in order to check
whether Gw is accepting. Therefore, the only nondeterminism in AL lies in the
guess of k, i.e., the transition between the initial phase and the ranking phase.

Recall that we denote by Q the set of preordered subsets of Q in Sect. 3.2.
Let Rm be the set of level rankings bounded by m. There are three types of
transitions in AL: transitions in the initial phase, transitions from the initial
phase to the ranking phase, and transitions within the ranking phase. The first
type of transitions is the σ-successor relation between preordered subsets for Bp,
as described in Sect. 3.2. We only give the other two types of transitions below.

Recall that the rank of a vertex u only depends on the number of >-labeled
classes larger than it, denoted α(u). The transitions moving between phases are
transitions from a preordered set 〈S,� 〉 to the level ranking of its σ-successor,
as defined below. For each q ∈ S, let β(q) = |{[p] | p ∈ S \ F, q ≺ p}| be the
number of non-F -classes larger than q (On level k + 1, a vertex is labeled with
> iff it is an non-F -vertex and β(q) is easy to compute). We define a function

12

torank : Q → Rm that obtains from a preordered set 〈S,�〉 a level-ranking
function f ∈ Rm such that for each q ∈ Q:

f(q) =

⊥ if q 6∈ S,
2β(q) if q ∈ S ∩ F,
2β(q) + 1 if q ∈ S \ F.

Now we define the transitions between the level rankings of Rm. For a level
ranking f ∈ Rm, σ ∈ Σ, and q′ ∈ Q, let pred(q′, σ, f) = { q | f(q) 6= ⊥, q′ ∈
ρ(q, σ) } be the predecessors of q′ with non-⊥ rank. One can see that the prede-
cessor in pred(q′, σ, f) with the lowest rank has the maximal profile in G among
pred(q′, σ, f). For h ∈ N, let bhceven be h if h is even and be h − 1 if h is odd.
Now we define the σ-successor of f to be f ′ where for each q′ ∈ Q:

f ′(q′) =

⊥ if pred(q′, σ, f) = ∅,
bmin({f(q) | q ∈ pred(q′, σ, f)})ceven if pred(q′, σ, f) 6= ∅ and q′ ∈ F ,
min({ f(q) | q ∈ pred(q′, σ, f) }) if pred(q′, σ, f) 6= ∅ and q′ 6∈ F .

Here the rank of a vertex v is computed based on the rank of its predecessor
u with maximal profile in G′w. Note, however, that λk may label a finite class >;
in such a case, a >-labeled class larger than u has no children, thus f(u) > f ′(v).
Hence we know that λk now is illegal, so an optimization is that we can just
ignore the computation of following successors; this optimization is omitted in
the construction for clarity. We formalize the construction of AL as below.

Definition 7. For an NBW A = 〈Q, I, δ, F 〉, let AL be the NBW 〈Q ∪ (Rm ×
2Q), IL, δL,Rm × {∅}〉, where

– IL = {〈I,�0〉}, where �0 is such that for all q, r ∈ I, q �0 r iff q 6∈ F or r ∈
F .

– δL(S, σ) = {S ′} ∪ {〈torank(S ′), ∅〉}, where S ′ is the σ-successor of S.

– δL(〈f,O〉, σ) = {〈f ′, O′〉} where f ′ is the σ-successor of f

and O′ =

{
ρ(O, σ) \ odd(f ′) if O 6= ∅,
even(f ′) if O = ∅.

Theorem 3 ([12]). For an NBW A with n states, we have that L(AL) = L(A)
and AL has O((8n)n) states.

The maximum rank of a state is m = 2|Q \ F | ≤ 2n, so the number of states in
the ranking phase is at most (2n+ 1)n × 2n ≤ (4n+ 2)n. The number of states
in the initial phase is at most O((0.53n)n) [12]; so, in total AL has at most
(4n + 2)n + O((0.53n)n) ∈ O((8n)n) states. We remark that the level rankings
can be further tightened, as done in [12], which, however, is not the goal of this
section.

13

5 Complementation via Congruence Relations

In this section, we first give a general framework of complementation construc-
tions from a language-theoretic perspective. We then recall the classical congru-
ence relations defined in [34] and give optimal congruence relations based on
profiles [24]. Büchi [6] proposed a construction based on congruence relations for
complementing NBWs, involving a Ramsey-based analysis, which is why it is
widely known as the Ramsey-based complementation (RBC). His argument was
refined in [34], where the construction of congruence relation was optimized.
Later, Thomas showed that the Ramsey argument was not necessary [35].

The language-theoretic perspective to [6,34] offers the observation that every
ω-regular language (including the universe of all ω-words) is a finite union of
languages of the form UV ω, where U and V (the latter does not contain the
empty word) are regular languages. One way to construct the complementary
language of an NBW A, is to find a finite collection of languages UiV

ω
i such

that (i) the union of the finite collection covers Σω, the universe of all ω-words,
while (ii) the union of a subset of the finite collection equals L(A) and the union
of the rest of the collection equals the complement of L(A). We refer to these
properties below as Properties (i) and (ii).

When dealing with words from UV ω, we can consider only the ultimately
periodic (UP)-words of the form uvω, where u ∈ U and v ∈ V and totally ignore
that there can be words that are not ultimately periodic [6,34,7]. We denote by
UP(L) the set of UP-words of L, i.e., {uvω ∈ L | u ∈ Σ∗, v ∈ Σ+ }. With the
following theorem, UP(L) can be seen as the “fingerprint” of L.

Theorem 4 ([7]). (1) Every non-empty ω-regular language L contains at least
one UP-word. (2) Let L, L′ be two ω-regular languages. Then, L = L′ if and
only if UP(L) = UP(L′).

Therefore, we are concerned only with UP-words in the remainder of this
paper. In the following, we present a general framework for obtaining the com-
plementary language of a given ω-language L.

To find a finite union of languages for constructing the complement of L, the
approach of [6,34] is to design first a finite partition of Σ+ satisfying Property
(i). Assume that P = {U0, · · · , Uk−1}, for k ≥ 1, is a finite partition of Σ+, so
Σ+ =

⋃
0≤i<k Ui and Ui ∩ Uj = ∅ for 0 ≤ i < j < k. We call each element of

P a block of P. By Theorem 4, Lemma 9 holds since we can prove UP(Σω) =
UP(

⋃
0≤i,j<k UiU

ω
j) from the fact that P is a partition of Σ+.

Lemma 9 (Coverage of Σω). Σω =
⋃

0≤i,j<k UiU
ω
j .

In order to obtain the complement language of L, the partition P has to
satisfy Property (ii) as well, so we introduce the saturation property of P. We
say P saturates L if each language UiU

ω
j , 0 ≤ i, j < k is either inside L or outside

L. To fulfill Property (ii), we can just let P saturate L. The following lemma
holds immediately.

Lemma 10 (Saturation of L). Let P saturate L. Then for every UiU
ω
j , 0 ≤

i, j < k, UiU
ω
j ∩ L 6= ∅ implies UiU

ω
j ⊆ L.

14

With P saturating L, we finally obtain the complement of L by the following
theorem, which is a direct consequence of Lemmas 9 and 10.

Theorem 5 (Complementary language of L). Let P saturate L. Then L =⋃
{UiUωj | Ui, Uj ∈ P, UiUωj ∩ L = ∅ }.

To obtain the partition P of Σ+, we use a congruence relation v. A right
congruence (RC) relation v over Σ∗ is an equivalence relation such that x v y
implies xv v yv for all v ∈ Σ∗. A congruence relation v over Σ∗ is an equivalence
relation such that x v y implies uxv v uyv for every x, y, u, v ∈ Σ∗. We denote
by |v| the index of the equivalence relation v, i.e., the number of equivalence
classes of v. A finite congruence relation is a congruence relation with a finite
index. We use Σ∗/v to denote the set of equivalence classes of v. Given x ∈ Σ∗,
we denote by [x]v the equivalence class of v that contains x.

A congruence relation v yields a finite partition Σ∗/v of Σ∗; so we can
also obtain a finite partition P of Σ+. It follows that we can construct the
complementary language of a given ω-language L, based on a congruence relation
v if the partition induced by v satisfies Properties (i) and (ii), i.e., satisfying
Lemmas 9 and 10. Below we introduce such a congruence relation.

5.1 Classical Congruence Relations

Sistla, Vardi, and Wolper [34] define the congruence relation v by distinguishing
finite words in Σ+ with the transition graph of A. More precisely, given a word
u ∈ Σ+, for every two states q, r ∈ Q, we care about the following two questions:

– Is there a path in A from q to r over u? (we denote by q
u−→r if so.)

– Is there a path in A from q to r over u that visits some accepting state? (we

denote by q
u
=⇒r if so.)

Thomas [35] suggests to present the answers to these two questions as the
following equivalence relation v.

Definition 8 ([34,35]). For all u1, u2 ∈ Σ+, u1 v u2 if and only if for all

q, r ∈ Q, (1) q
u1−→r iff q

u2−→r; and (2) q
u1==⇒r iff q

u2==⇒r.

Let u1 and u2 be two finite words such that u1 v u2. We have that xu1y v
xu2y holds for all x, y ∈ Σ∗ because independently from the states reached by
A after reading x, by Definition 8 A reaches the same state by reading u1 and
u2, hence it can reach the same state after continuing with y. Therefore, we have
following result.

Lemma 11. The equivalence relation v is a (right-)congruence relation.

Since v is defined by reachability between states, we can map each of the n2

pairs of states (q, r) to either both q
u
=⇒r and q

u−→r, or just q
u−→r or none of them.

Thus, we have |v| = |Σ+/v| ≤ 3n
2

. That is, the number of equivalence classes

induced by v, say k ≥ 1, is at most 3n
2

, as stated in the following lemma.

15

Lemma 12 ([34,35]). Let v be as given in Definition 8. Then |v| ≤ 3n
2

.

Let Pv = {U0, U1, · · · , Uk−1} where Ui is (i+1)-th equivalence class induced
by v in Σ+ and k is the index of v. By Lemma 9, for all partitions of Σ+,
including Pv, we can cover the universe of Σω. Thus, we have:

Lemma 13 (Coverage of Σω). Σω =
⋃
U,V ∈Pv

UV ω.

An important property we want to have is that the finite partition Pv satu-
rates L(A), which indeed holds for v.

Lemma 14 (Saturation of L(A) [34,35]). For all U, V ∈ Pv, we have that
(UV ω) ∩ L(A) 6= ∅ implies UV ω ⊆ L(A).

The intuition is that an accepting run ρ of the form q0
u−→q1

v−→q2 · · · qi
v−→qi+1 · · ·

for uvω ∈ (UV ω) ∩ L(A) with u ∈ U and v ∈ V induces an accepting run over

u′v′ω with u′ ∈ U and v′ ∈ V ′ of the form q0
u′

−→q1
v′−→q2 · · · qi

v′−→qi+1 · · · , accord-
ing to Definition 8. This means that for each U, V ∈ P, either UV ω ⊆ L(A) or
UV ω ⊆ Σω \ L(A). Thus, we obtain the complementary language of A:

Theorem 6 (Complementary language of L(A) [34,35]). Σω \ L(A) =⋃
{UV ω | U, V ∈ Pv, UV

ω ∩ L(A) = ∅ }.

Construction of complementary NBWs. For a given RC v of a regular language
L, it is well-known that Myhill-Nerode theorem [30,31] defines a unique minimal
DFW D of L, in which each state of D corresponds to an equivalence class
defined by v over Σ∗. Therefore, we can construct a DFW D[v] from v in a
standard way [18]. We already have the congruence relation v, which yields the
finite collection of UiV

ω
i that equals to L(A) (cf. Theorem 6) where Ui, Vi ∈ P.

To obtain the complementary NBW of A, we construct, for each language UiV
ω
i ,

its NBW BUi,Vi
with two copies of the DFW D[v] where the first copy accepts

Ui while the second copy is modified from D[v] to accept the words V ωi by
adding a unique accepting state to connect the initial state and the original
accepting states in D[v]. Each D[v] has at most 3n

2

states, so BUi,Vi has at most

2× 3n
2

+ 1 states. Then the complementary NBW of A, say A, can be obtained
by computing the union of all such NBWs BUi,Vi

, where UiV
ω
i ∩ L(A) = ∅.

Moreover, the number of possible such NBWs BUi,Vi
is 3n

2 × 3n
2

according

to Lemma 12. In total, the number of states in A is in 2O(n2). Therefore, we
finally have the following theorem for the complementation algorithm based on
congruence relation v.

Theorem 7 ([34]). For an NBW A with n states, we have that L(A) = L(A)

and A has at most 2O(n2) states.

In the remainder of the section, we show that we can obtain tighter congruence
relations to obtain the complementary language Σω \ L(A) based on profiles.

16

5.2 Profile-Based Congruence Relations

In Theorem 5, we show that it is possible to obtain the complementary language
of a given ω-regular language L from a finite partition P of Σ+ that saturates
and covers L. The congruence relation v defined in Section 5.1 implements such
a partition P for a given ω-regular language L(A) specified with an NBW A. The
requirement of a full congruence relation is, however, too strong and contains
redundant information, which may lead to unnecessary blow-up; see, e.g., [24]. In
fact, the authors in [24] have shown that full congruence relations are not needed
for obtaining partitions that saturate L(A), and RCs suffice. Since RC relations
are coarser than full congruence relations, the complementation algorithms based
on RCs can give us tighter constructions of the complementary NBWs.

In fact, the use of RCs in [24] dates back to earlier works [26,4]. In [26,4],
the authors showed that one can define separate partitions for the finite prefixes
U and the periodic words V for a given ω-regular language L. More precisely,
one first defines a finite partition P = {U0, · · · , Uk−1} of Σ+ for finite prefixes
with an RC ≈. Then, for each block Ui ∈ P, we define a finite partition Pi =
{Vi,0, · · · , Vi,ki−1} of Σ+ for the periodic words with an RC ≈Ui . The families of
partitions defined in [26,4] satisfy certain properties of saturation and coverage,
which we call family coverage and family saturation, as formalized below.

(1) Family Coverage: Σω =
⋃
Ui∈P(

⋃
{Vi,j∈Pi|UiVi,j=Ui } UiV

ω
i,j).

(2) Family Saturation: For every pair Ui ∈ P and Vi,j ∈ Pi, if UiVi,j = Ui,
it holds that either UiV

ω
i,j ⊆ L or UiV

ω
i,j ⊆ Σω \ L.

Similarly to Theorem 6, we have the following result.

Theorem 8 (Complementary language of L [26,4]). Let (P, {Pi}0≤i<k)
be a family of partitions satisfying family coverage and family saturation. Then
L =

⋃
Ui∈P{UiV

ω
i,j | Ui ∈ P, Vi,j ∈ Pi, UiVi,j = Ui, UiV

ω
i,j ∩ L = ∅ }.

In this section, we introduce the RCs that define such families of partitions
for an ω-regular language L(A) specified with an NBW A = (Q, I, δ, F), using
the framework of profiles described in Subsection 3.1. We first define the RC
≈ that induces the finite partition P for finite prefixes. To that end, we first
describe a profile-based preorder �u on the set δ(I, u) of states for a given finite
prefix u ∈ Σ∗ [12,11].

Recall that when defining the congruence relation v, we reasoned about
the reachability relation between every pair of states of A over a finite word u
(cf. Definition 8). Here, we focus on the set δ(I, u) of states reached from the
initial states over a finite prefix u ∈ Σ∗, and we make use of the pruned run
DAG as defined in Section 3. We show that one can define RCs to distinguish
two finite prefixes u1 and u2 by the set of ordered states in their respective
pruned run DAG G′u1w′ and G′u2w′ , for an arbitrary w′ ∈ Σω. We introduced in
Subsection 3.1 the preorder �i for the states on level i in a run DAG G′w for
w ∈ Σω (cf. Definition 1). Since the preorder �i is only dependent on the prefix
w[1 · · · i], we can just describe �i with respect to the finite prefix u = w[1 · · · i],
denoted �u as below.

17

Definition 9 (Preorder �w[1···i]). Let w ∈ Σω, u = w[1 · · · i], and q, r ∈
δ(I, u). We have that q �u r iff q �i r in G′w. Furthermore, we define an equiv-
alence relation q 'u r if q 'i r in G′w.

Let w ∈ Σω, u = w[1 · · · i], and P = δ(I, u). Let [q]�u = { r ∈ P | q 'u r }
be the equivalence class of q ∈ P under �u; We denote by P/�u the family of
such equivalence classes. Note that every two states q, r in P , rather than in the
whole set Q, are comparable under the preorder �u since every two states in P
are comparable under �i (cf. Definition 1). We denote by 〈P,�u〉 the ordered
family of equivalence classes of P under �u. Recall that the preorder �i of G′w
is equivalent to �u (cf. Definition 9). Therefore, the a-successor of 〈P,�u〉 can
be computed with T (〈P,�u〉, a) as given in Definition 2. It is immediate that:

Corollary 2. Let u ∈ Σ∗, a ∈ Σ and P = δ(I, u). Then 〈δ(I, ua),�ua〉 =
T (〈P,�u〉, a).

We are now ready to define the RC ≈ given in [24] with our notations. Instead
of considering every pair of states (q, r) of A to define the congruence relation
v (cf. Definition 8), we use the finite prefix u by tracing the reachable states
δ(I, u) with the preorder �u to get the RC ≈.

Definition 10 (RC ≈). For u1, u2 ∈ Σ∗, we say u1 ≈ u2 iff 〈δ(I, u1),�u1
〉 =

〈δ(I, u2),�u2
〉.

It is easy to see that ≈ is indeed an RC.

Lemma 15. The equivalence relation ≈ is an RC.

Since each equivalence class [u]≈, u ∈ Σ+, can be uniquely encoded as the set
〈δ(I, u),�u〉, i.e., an ordered partition of Q, by [37,12] we have that the number
of possible ordered partitions over Q is approximately (0.53n)n ≤ nn. Thus we
have the following upper bound for ≈.

Lemma 16 ([24]). Let ≈ be the RC in Definition 10. Then |≈| ≤ nn.

We now define the RC ≈u for processing the periodic words based on the
reachability between equivalence classes in G′uw, where w ∈ Σω. More precisely,
we define reachability between equivalence classes under the preorder�u (at level
|u|) and �uv (at level |uv|) in the pruned run DAG G′uvw. We say that [q]�u v-

reaches [r]�uv
, denoted by [q]�u

v−→[r]�uv
, if there are two vertices τ ∈ [q]�u

×{|u|}
and τ ′ ∈ [r]�uv × {|uv|}) in G′uvw such that τ

v−→τ ′. We write [q]�u

v
=⇒[r]�uv if

such path from τ to τ ′ also visits an F -vertex. One can see that the reachability
relation between the equivalence classes does not depend on levels after |uv| in
G′uvw, i.e., w is not used there. So w can be an arbitrary ω-word in Σω.

Definition 11 (RC ≈u). Given u, v1, v2 ∈ Σ∗, we say v1 ≈u v2 if (1) uv1 ≈
uv2, and (2) for all states q ∈ P, r ∈ P ′, where P = δ(I, u) and P ′ = δ(I, uv1) =
δ(I, uv2), we have

(i) [q]�u

v1−→[r]�uv1
holds in G′uv1w iff [q]�u

v2−→[r]�uv2
holds in G′uv2w, and

18

(ii) [q]�u

v1==⇒[r]�uv1
holds in G′uv1w iff [q]�u

v2==⇒[r]�uv2
holds in G′uv2w.

Note that under the assumption uv1 ≈ uv2, we have that the ordered partitions
〈δ(I, uv1),�u1

〉 and 〈δ(I, uv2),�u2
〉 are equal by definition of ≈. It follows that

δ(I, uv1) = δ(I, uv2) also holds.
Definition 11 is designed to formalize the following idea for recognizing the ω-

words accepted and rejected byA. We want to use the RC ≈ for the finite prefixes
and the RC ≈u for the periodic finite words of u to establish the family saturation
property introduced before. That is, under the assumption that u ≈ uv1 and
u ≈ uv2, we want to guarantee that if v1 ≈u v2, then uvω1 ∈ L(A) if and only
if uvω2 ∈ L(A). To achieve this, the first condition we impose – Item (1) of
Definition 11 – is to ensure visiting infinitely often the same ordered partition
under �u over the ω-words uvω1 and uvω2 ; so we require uv1 ≈ uv2. The second
condition is to guarantee that the profiles of branches in the pruned run DAG
G′
uvk1w

and G′
uvk2w

, k ≥ 1, share visits to F -vertices; so, when extending to infinite

words, their profiles either both have infinitely many 1s or neither of them does.
This ensures that uvω1 ∈ L(A) if and only if uvω2 ∈ L(A). To guarantee that,
we first require that the reachability relation between every pair of equivalence
classes or blocks under �u over finite words v1 and v2 either holds for both or
neither of them (cf. condition (2)-(i)); then, we demand that they also share the
visits to accepting states (cf. condition (2)-(ii)).

As stated before Definition 11, the index of ≈u is indeed in 2O(n logn).

Lemma 17 ([24]). Given u ∈ Σ∗, let ≈u be the RC from Definition 11. Then
|≈u| ≤ nn × (n+ 1)n × 2n ∈ 2O(n logn).

The upper bound for |≈u| can be deduced from the encoding we use for [v]≈u
.

[v]≈u
is mapped to the pair 〈〈δ(I, uv),�uv〉, f〉 where the function f keeps track

of the satisfaction of the pair of states q, r ∈ Q of the conditions in Definition 11,
i.e., whether [q]�u

v−→[r]�uv and [q]�u

v
=⇒[r]�uv in Conditions (2)-(i) and (2)-(ii)

for the such states. Each equivalence class [r]�uv can only be reached by exactly
one equivalence class under �u. There are at most n equivalence classes defined
by both �u and �uv. Then the codomain of f has size 2n+ 1 < 2(n+ 1), so the
possible different functions f are (2(n+ 1))n = 2n × (n+ 1)n, while by [12] the
possible sets 〈δ(I, uv),�uv〉 are nn, hence |≈u| ≤ nn× (n+1)n×2n ∈ 2O(n logn).

Let P = {U0, · · · , Uk−1} be a partition of Σ+ induced by ≈. For each block
Ui ∈ P, let Pi = {Vi,0, · · · , Vi,ki−1} be the partition of Σ+ induced by ≈u, where
[u]≈ = Ui. We first show that to cover Σω, we do not need to consider all Ui and
Vi,j pairs, i.e., the Property (1) as aforementioned. To that end, we first prove
that the concatenation of an equivalence class Ui of P and an equivalence class
Vi,j of Pi is also an equivalence class of P.

Lemma 18. For all Ui ∈ P and Vi,j ∈ Pi, we have UiVi,j ∈ P where 0 ≤ i < k
and 0 ≤ j < ki.

We now show that we can focus on a subset of pairs of equivalence classes
Ui ∈ P and Vi,j ∈ Pi to cover the universe Σω, i.e., Property (1).

19

Lemma 19 (Coverage of Σω [24]). Σω =
⋃

0≤i<k,0≤j<ki{UiV
ω
i,j | UiVi,j =

Ui }.
The proof idea of Lemma 19 is similar to that of Lemma 9. That is, one

can just prove that the UP-words of two sets are equivalent. We refer interested
readers to [24] for the proof details.

We now need to show that that the partition (P, {Pi}) saturates the ω-regular
language L(A), i.e., Property (2). The proof of Lemma 20 is similar to that of
Lemma 14, except that we consider the reachability relation over equivalence
classes in reduced run DAGs G′w rather than over states.

Lemma 20 (Saturation of L(A) [24]). For Ui ∈ P, Vi,j ∈ Pi, if UiVi,j = Ui,
UiV

ω
i,j ∩ L(A) 6= ∅ implies UiV

ω
i,j ⊆ L(A).

Finally, it follows that we can construct the complementary language of L(A).

Theorem 9 (Complementary language of L(A) [24]).
Σω \ L(A) =

⋃
0≤i<k,0≤j<ki{UiV

ω
i,j | UiVi,j = Ui, UiV

ω
i,j ∩ L(A) = ∅ }.

Breuers et al. [5] used a subset construction to define an RC for processing
the finite prefix u of a UP-word uvω in Σω \ L(A); however, they still used the
classical congruence relation v in Definition 8 for recognizing the periodic word
v of uvω. The congruence relation for processing v in [5] has also been optimized
with a preorder, leading to the same upper bound 2O(n logn) as our work. As
pointed out in [24], the complementation construction in [5] uses more than one
congruences for recognizing v for a given u; instead, we need only one RC here
since the equivalence class [u]≈ of ≈ only relates with one RC ≈u.

In Theorem 7, we are able to build a complementary NBW for A with the
congruence relation v, which in fact only requires v being an RC. Similarly, we
can now construct a complementary NBW Ac that accepts Σω \L(A), based on
≈ and ≈u, u ∈ Σ∗. Since the index of ≈u is in 2O(n logn), the number of states
in Ac is also in 2O(n logn).

Theorem 10 ([24]). For an NBW A with n states, we have that L(Ac) = L(A)
and Ac has at most 2O(n logn) states.

We remark that the RCs v and ≈u, u ∈ Σ∗ allow us to construct a family of
DFWs [4] that accept either L(A) or Σω \ L(A) [24]; we refer to [24] for the
detailed construction.

6 Concluding Remarks

Over the past few decades, several different approaches have been proposed for
complementing NBWs: congruence-based (alternatively Ramsey-based), rank-
based and slice-based (alternatively profile-based) constructions. In this work
we show that the profile-based analysis is the one tool underlying all of them.

Profiles have been used in [11] for the determinization-based complemen-
tation construction. As future work, we will look into the problem of whether
profile-based analysis can also be used to explain determinization-based comple-
mentation constructions, such as Safra’s [32] and Muller-Schupp’s [29], possibly
inspired by the unified approaches presented in [11,25].

20

Acknowledgements. We thank the anonymous reviewers for their valuable
suggestions to this paper. This work is supported in part by the National Nat-
ural Science Foundation of China (Grant Nos. 62102407 and 61836005), NSF
grants IIS-1527668, CCF-1704883, IIS-1830549, CNS-2016656, DoD MURI grant
N00014-20-1-2787, and an award from the Maryland Procurement Office.

References

1. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr, and
T. Vojnar. Simulation subsumption in Ramsey-based Büchi automata universality
and inclusion testing. In T. Touili, B. Cook, and P. B. Jackson, editors, CAV,
volume 6174 of LNCS, pages 132–147. Springer, 2010.

2. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr, and
T. Vojnar. Advanced Ramsey-based Büchi automata inclusion testing. In J.-P.
Katoen and B. König, editors, CONCUR, volume 6901 of LNCS, pages 187–202.
Springer, 2011.

3. J. D. Allred and U. Ultes-Nitsche. A simple and optimal complementation algo-
rithm for Büchi automata. In A. Dawar and E. Grädel, editors, LICS, pages 46–55.
ACM, 2018.

4. D. Angluin and D. Fisman. Learning regular omega languages. Theoretical Com-
puter Science, 650:57–72, 2016.

5. S. Breuers, C. Löding, and J. Olschewski. Improved Ramsey-based Büchi comple-
mentation. In FOSSACS, pages 150–164, 2012.

6. J. R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Int. Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12.
Stanford University Press, 1962.

7. H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational ω-
languages. In MFPS, pages 554–566. Springer, 1993.

8. Y.-F. Chen, V. Havlena, and O. Lengál. Simulations in rank-based Büchi automata
complementation. In A. W. Lin, editor, APLAS, volume 11893 of Lecture Notes
in Computer Science, pages 447–467. Springer, 2019.

9. E. A. Emerson and C.-L. Lei. Temporal reasoning under generalized fairness con-
straints. In B. Monien and G. Vidal-Naquet, editors, STACS, volume 210 of Lecture
Notes in Computer Science, pages 21–36. Springer, 1986.

10. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In T. Margaria and W. Yi, editors, TACAS, volume
2031 of Lecture Notes in Computer Science, pages 420–434. Springer, 2001.

11. S. Fogarty, O. Kupferman, M. Y. Vardi, and T. Wilke. Profile trees for Büchi word
automata, with application to determinization. Inf. Comput., 245:136–151, 2015.

12. S. Fogarty, O. Kupferman, T. Wilke, and M. Y. Vardi. Unifying Büchi comple-
mentation constructions. Log. Methods Comput. Sci., 9(1), 2013.

13. S. Fogarty and M. Y. Vardi. Efficient Büchi universality checking. In J. Esparza
and R. Majumdar, editors, TACAS, volume 6015 of Lecture Notes in Computer
Science, pages 205–220. Springer, 2010.

14. S. Fogarty and M. Y. Vardi. Büchi complementation and size-change termination.
Logical Methods in Computer Science, 8(1), 2012.

15. E. Friedgut, O. Kupferman, and M. Y. Vardi. Büchi complementation made tighter.
Int. J. Found. Comput. Sci., 17(4):851–868, 2006.

21

16. S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
nondeterministic Büchi automata. In D. Geist and E. Tronci, editors, CHARME,
volume 2860 of Lecture Notes in Computer Science, pages 96–110. Springer, 2003.

17. V. Havlena and O. Lengál. Reducing (to) the ranks: Efficient rank-based Büchi
automata complementation (technical report). CoRR, abs/2010.07834, 2020.

18. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation, Second Edition. Addison-Wesley, 2000.

19. D. Kähler and T. Wilke. Complementation, disambiguation, and determinization
of Büchi automata unified. In ICALP, pages 724–735. Springer, 2008.

20. H. Karmarkar and S. Chakraborty. On minimal odd rankings for Büchi comple-
mentation. In Z. Liu and A. P. Ravn, editors, ATVA, volume 5799 of Lecture Notes
in Computer Science, pages 228–243. Springer, 2009.

21. N. Klarlund. Progress measures for complementation of omega-automata with
applications to temporal logic. In FOCS, pages 358–367. IEEE Computer Society,
1991.

22. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

23. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(3):408–429, 2001.

24. Y. Li, Y. Tsay, A. Turrini, M. Y. Vardi, and L. Zhang. Congruence relations for
büchi automata. In M. Huisman, C. S. Pasareanu, and N. Zhan, editors, FM,
volume 13047 of LNCS, pages 465–482. Springer, 2021.

25. C. Löding and A. Pirogov. Determinization of Büchi automata: Unifying the ap-
proaches of Safra and Muller-Schupp. In C. Baier, I. Chatzigiannakis, P. Flocchini,
and S. Leonardi, editors, ICALP, volume 132 of LIPIcs, pages 120:1–120:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

26. O. Maler and L. Staiger. On syntactic congruences for omega-languages. Theor.
Comput. Sci., 183(1):93–112, 1997.

27. M. Michel. Complementation is more difficult with automata on infinite words.
Technical report, CNET, Paris (Manuscript), 1988.

28. S. Miyano and T. Hayashi. Alternating finite automata on omega-words. Theor.
Comput. Sci., 32:321–330, 1984.

29. D. E. Muller and P. E. Schupp. Simulating Alternating Tree Automata by Non-
deterministic Automata: New Results and New Proofs of the Theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995.

30. J. Myhill. Finite automata and the representation of events. In Technical Report
WADD TR-57-624, page 112–137, 1957.

31. A. Nerode. Linear automaton transformations. In American Mathematical Society,
page 541–544, 1958.

32. S. Safra. On the complexity of ω-automata. In FOCS, pages 319–327. IEEE, 1988.
33. S. Schewe. Büchi complementation made tight. In STACS, volume 3 of LIPIcs,

pages 661–672. Schloss Dagstuhl, Germany, 2009.
34. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi

automata with applications to temporal logic. Theoretical Computer Science, 49(2-
3):217–237, 1987.

35. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, pages 133–191. Elsevier and
MIT Press, 1990.

36. M.-H. Tsai, S. Fogarty, M. Y. Vardi, and Y.-K. Tsay. State of Büchi complemen-
tation. Log. Methods Comput. Sci., 10(4), 2014.

22

37. M. Y. Vardi. Expected properties of set partitions. Technical report, The Weiz-
mann Institute of Science, 1980.

38. M. Y. Vardi. Verification of concurrent programs: The automata-theoretic frame-
work. Ann. Pure Appl. Log., 51(1-2):79–98, 1991.

39. M. Y. Vardi. The Büchi complementation saga. In W. Thomas and P. Weil,
editors, STACS, volume 4393 of Lecture Notes in Computer Science, pages 12–22.
Springer, 2007.

40. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In LICS, pages 332–344. IEEE, 1986.

41. Q. Yan. Lower bounds for complementation of ω-automata via the full automata
technique. Logical Methods in Computer Science, 4(1:5), 2008.

23

	Towards a Grand Unification of Büchi Complementation Constructions

