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Abstract
We consider the problem of synthesizing good-
enough (GE)-strategies for Linear Temporal Log-
ic (LTL) over finite traces or LTLf for short. The
problem of synthesizing GE-strategies for an LTL
formula ϕ over infinite traces reduces to the prob-
lem of synthesizing winning strategies for the for-
mula (∃Oϕ) =⇒ ϕ, where O is the set of propo-
sitions controlled by the system. We first prove
that this reduction does not work for LTLf formu-
las. Then we show how to synthesize GE-strategies
for LTLf formulas via the Good-Enough (GE)-
synthesis of LTL formulas. Unfortunately, this re-
quires to construct deterministic parity automata on
infinite words, which is computationally expensive.
We then show how to synthesize GE-strategies for
LTLf formulas by a reduction to solving games
played on deterministic Büchi automata, based on
an easier construction of deterministic automata on
finite words. We show empirically that our special-
ized synthesis algorithm for GE-strategies outper-
forms the algorithms going through GE-synthesis
of LTL formulas by orders of magnitude.

1 Introduction
Reactive synthesis is the automated construction of a reactive
system from a given specification ϕ [Church, 1957], typically
written as a Linear Temporal Logic (LTL) formula over a set
of input signals I and a set of outputsO [Pnueli, 1977]. Reac-
tive synthesis can be used to solve a number of different prob-
lems in AI, in particular planning. For instance, several vari-
ants of conditional planning problems with fully observability
can be reduced to LTL synthesis problems, see, e.g., [Aminof
et al., 2019; Camacho et al., 2019]. The task of synthesis is
to construct a system M such that for each infinite input se-
quence α ∈ (2I)ω ,M is able to output, in a step-by-step fash-
ion, an output sequence M(α) such that the combined input
and output sequence satisfies ϕ, i.e., α⊗M(α) |= ϕ [Pnueli
and Rosner, 1989]. The extracted system M is a winning s-
trategy. The synthesis problem of winning strategies for an
LTL formula ϕ has been proved to be 2EXPTIME-complete
and it is usually reduced to solving a game between the envi-
ronment controlling the input signals and the system control-

ling the output, on a deterministic Parity automaton (DPA)
representing ϕ [Pnueli and Rosner, 1989].

The requirement for constructing a system producing a sat-
isfying computation of ϕ for each input sequence α is, how-
ever, sometimes too strong and unrealistic: there may be in-
put sequences making ϕ unsatisfiable, whatever the output-
s are. Therefore, researchers have proposed [Almagor and
Kupferman, 2020; Damm and Finkbeiner, 2011] to relax this
requirement and focused on synthesizing a system that makes
best effort to respond to the input signals from the environ-
ment, which is termed as the good-enough (GE) synthesis
in [Almagor and Kupferman, 2020]. More precisely, for GE-
synthesis, the synthesized system M is required to output a
sequenceM(α) such that α⊗M(α) |= ϕ whenever possible.
That is, if there does not exist an output sequence β such that
α ⊗ β |= ϕ, M can just respond with an arbitrary output se-
quence. We call such a system a good-enough (GE)-strategy.
The synthesis problem of GE-strategies for LTL formulas has
been reduced to the synthesis of winning strategies for the
formula (∃Oϕ) =⇒ ϕ [Almagor and Kupferman, 2020;
Damm and Finkbeiner, 2011], where the assumption ∃Oϕ
restricts us to the input sequences that can be combined with
an output sequence such that the resultant sequences sat-
isfy ϕ. More precisely, given a formula ϕ with free in-
put/environment variables I and free output/system variables
O, ∃Oϕ is the formula where only input variables in ϕ are
left free, while output variables are existentially quantified;
∃Oϕ stands for ∃o1 · · · ∃okϕ, where O = {o1, . . . , ok} and
k ≥ 1, and it has the same meaning as in standard first order
logic. We refer to [Sistla et al., 1987] for more details of LTL
with ∃ (existential) and ∀ (universal) quantifiers.

In recent years, the version of LTL over finite traces [Baier
and McIlraith, 2006; De Giacomo and Vardi, 2013], or LTLf

for short, emerged as another popular logic for specification-
s, because many settings, such as planning [Baier and McIl-
raith, 2006], assume that an execution stops after the specifi-
cation has been achieved; we refer to [De Giacomo and Vardi,
2013] for more applications of LTLf in AI. Later, synthesiz-
ing winning strategies for an LTLf formula ϕ was proved
to be 2EXPTIME-complete and can be reduced to solving a
game played on a deterministic finite automaton (DFA) ac-
cepting ϕ [De Giacomo and Vardi, 2015]. LTLf synthesis
has since then found applications in specifying task plans in
robotics [He et al., 2017; Lahijanian et al., 2015], business



processes [Pesic et al., 2010], and more.
This work looks into the synthesis problem of GE-

strategies for LTLf formulas. Our contributions are threefold
and summarized as follows. First, we show that the reduction
idea in the LTL setting to the synthesis of winning strategies
for the formula (∃Oϕ) =⇒ ϕ does not work for LTLf

formulas. Second, we show that synthesizing GE-strategies
for LTLf formulas can be reduced to the synthesis for LTL
formulas. In practice, however, solving LTLf synthesis via
a translation to LTL cannot compete with native approaches
specialized for LTLf formulas, as shown in [Zhu et al., 2017;
Wells et al., 2020]. This is because in practice, DFAs are ex-
pressive enough to accept the language of an LTLf formula
and specialized algorithms for constructing automata on finite
words are easier and more efficient than those for building au-
tomata on infinite words for an LTL formula [Zhu et al., 2017;
Wells et al., 2020]. Moreover, LTL synthesis requires solv-
ing parity (DPA) games, while LTLf synthesis only depends
on solving DFA games; it is known that solving a DFA game
is much easier than solving a DPA game between the envi-
ronment and the system, since DFA games are solvable in
polynomial time [Mazala, 2002], while whether DPA game
is doable in polynomial time is still an open problem [Calude
et al., 2017]. Therefore, it is of importance to obtain a
specialized algorithm for the synthesis of GE-strategies for
LTLf formulas to achieve better scalability. Third, and our
main contribution, we propose to synthesize GE-strategies
for LTLf formulas by a reduction to solving a game played
on deterministic Büchi automata, based on construction of
DFAs. We also prove that the problem of synthesizing GE-
strategies for LTLf formulas is 2EXPTIME-complete. More-
over, we conduct a comprehensive empirical evaluation on
benchmarks from synthesis competitions and literature. We
show that our specific synthesis algorithm for GE-strategies
outperforms the algorithm going through GE-synthesis of
LTL formulas by orders of magnitude, regarding the runtime
and the number of solved cases.

2 Preliminaries
2.1 Linear Temporal Logic over Finite Traces
We focus here on Linear Temporal Logic over finite traces
(LTLf ) [Baier and McIlraith, 2006; De Giacomo and Vardi,
2013], which is a variant of LTL [Pnueli, 1977] with the same
syntax but it is interpreted over finite instead of infinite traces.
The syntax of an LTLf formula over a finite set of proposi-
tions P is defined as ϕ ::= a ∈ P | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ |
Xϕ | ϕUϕ | Fϕ | Gϕ. Here X (strong Next), U (Until), F
(Finally/Eventually), and G (Globally/Always) are temporal
operators interpreted over finite traces. Note that X is a strong
next operator such that Xϕ requires the tail of the finite trace
to satisfy ϕ, while we use N to denote the weak next opera-
tor such that Nϕ demands that if the tail of the finite trace is
not empty, then it satisfies ϕ. Consequently, Nϕ := ¬X¬ϕ.
The negation of an LTLf formula ϕ, i.e., ¬ϕ is also an LTLf

formula. As usual, true and false represent a tautology and
a falsum, respectively. We denote by |ϕ| the length of ϕ, i.e.,
the number of temporal operators and connectives in ϕ. We
refer interested readers to [Pnueli, 1977] and [De Giacomo

and Vardi, 2013] for the semantics of LTL and LTLf , respec-
tively. The language of an LTL/LTLf formula ϕ, denoted as
L(ϕ), is the set of infinite/finite words over 2P that satisfy ϕ.

2.2 NFA, DFA, DBA, and DPA
A nondeterministic finite automaton (NFA) is a tuple A =
(Σ, S, ι,∆, F ), where S is a finite set of states, ι ∈ S is the
initial state, ∆: S×Σ→ 2S is the nondeterministic transition
function, and F ⊆ S is the set of accepting states. A run of
A on a word u = u0u1 · · ·un ∈ Σ∗ is a sequence of states
ρ = s0 · · · sn+1 ∈ S+ such that s0 = ι and si+1 ∈ ∆(si, ui)
holds for all i ∈ {0, . . . , n}. The run ρ is accepting if sn+1 ∈
F . A accepts a word u if there is an accepting run of A on u.
The language L(A) of A is the set of all accepted words. An
NFA D is said to be a deterministic finite automaton (DFA)
if for each s ∈ S and a ∈ Σ, |∆(s, a)| ≤ 1, i.e., we have
∆: S × Σ→ S.

For an LTLf formula ϕ one can construct, with a single-
exponential blow-up, an NFA A over the alphabet Σ = 2P

from ϕ such that L(A) = L(ϕ) [De Giacomo and Vardi,
2013]. An NFA A can be converted into an equivalent DFA
D with an exponential blowup by subset construction (see,
e.g., [Hopcroft et al., 2007]). Consequently, an LTLf formu-
la ϕ can be converted to a DFA D whose number of states is
at most doubly exponential in the size of ϕ.

A deterministic Büchi automaton (DBA) is a tuple B =
(Σ, S, ι,∆, F ) as in the definition of DFAs; the difference lies
in the fact that a DBA only accepts infinite words. The run
of B on u = u0u1 · · ·un · · · ∈ Σω is the infinite sequence
ρ = s0 · · · sn+1 · · · ∈ Sω of states such that s0 = ι and
si+1 = ∆(si, ui) holds for all i ≥ 0. ρ is accepting if ρ visits
some state in F infinitely many times. B accepts an infinite
word u if the run of B on u is accepting. The language L(B)
of B is the set of all accepted infinite words.

A deterministic Parity automaton (DPA) is a tuple P =
(Σ, S, ι,∆, p), where S, ι and ∆ are as in DBAs while
p : S → N is a function defining the acceptance condition.
The run ρ of P over u is accepting if the minimal color in-
duced by p occurring infinitely often in ρ is even. Note that
one can construct a DPA P for every LTL formula ϕ such that
L(P ) = L(ϕ), while there exists an LTL formula ψ such that
no DBA accepts L(ψ) [Baier and Katoen, 2008].

2.3 Winning and Good-Enough Strategies
Let A and B be two finite sets and α = a0, a1, · · · and
β = b0, b1, · · · be two finite/infinite words over 2A and
2B , respectively. We denote by α ⊗ β the combined word
(a0 ∪ b0), (a1 ∪ b1) · · · over 2A∪B and by α	 β the reduced
word (a0 \ b0), (a1 \ b1) · · · over 2A\B , provided that α, β
are of the same length. We denote by α[i] the element ai of α
and we use α[i..k] to denote the subword of α between ai and
ak, included, when i ≤ k and the empty word ε when i > k;
lastly, we denote by α[i..] the suffix of α starting from ai.

In this work we consider LTL/LTLf formulas over P =
I ∪ O, where I and O are two disjoint sets of proposi-
tions/variables. The set of input variables I is controlled
by the environment while the set of output variables O is
controlled by the system. A strategy γ is a total function



γ : (2I)+ → 2O. For every word α = I0, I1, · · · ∈ (2I)ω

of interpretations over I, the strategy γ induces the word
(I0∪γ(I0)), (I1∪γ(I0, I1)), . . . , (Im∪γ(I0, . . . , Im)) · · · ∈
(2P)ω of interpretations over P , which we call the computa-
tion induced by γ on α, denoted as α⊗ γ(α).
Definition 1 (Winning strategy). Let γ be a strategy. (1) γ
is a winning strategy for an LTL formula ϕ if for every in-
finite word α = I0, I1, · · · ∈ (2I)ω of interpretations over
I, the computation α ⊗ γ(α) satisfies ϕ. (2) γ is a win-
ning strategy for an LTLf formula ϕ if for every infinite word
α = I0, I1, · · · ∈ (2I)ω of interpretations over I, there exists
an integer m ≥ 0 such that α[0..m]⊗ γ(α)[0..m] satisfies ϕ.

Intuitively, for an LTLf formula ϕ, the environment, con-
trolling the input variables, provides an unbounded sequence
of inputs α; a strategy γ, in order to be winning for ϕ, must
generate an appropriate sequence of output variables γ(α)
such that, once combined with α as α⊗ γ(α), there is a finite
prefix of α⊗ γ(α) of length m+ 1 that satisfies ϕ.

We say that ϕ is realizable if there is a winning strategy for
ϕ. The problem of LTL synthesis [Pnueli and Rosner, 1989]
is to decide whether ϕ is realizable and construct a winning
strategy if so. Intuitively, LTL synthesis can be regarded as
a DPA game corresponding to ϕ [Pnueli and Rosner, 1989]
played between an external environment and the desired sys-
tem that take turns to assign values to input and output propo-
sitions, respectively. The game is won by the system if we
can construct a winning strategy guaranteeing that the resul-
tant infinite input-output sequence satisfies ϕ. Similarly, the
problem of LTLf synthesis is to decide whether the LTLf for-
mula ϕ is realizable and to construct a winning strategy if so.
Different from that of LTL formulas, LTLf synthesis for ϕ
can be reduced to solving a game between the system and the
environment played on a DFA accepting ϕ [De Giacomo and
Vardi, 2015], rather than on a DPA.

In practice, however, it is not always possible to con-
struct a winning strategy for the system. For instance, let
ϕ = Fi ∧ Fo where i and o are input and output variables,
respectively. ϕ requires the computation to make both i
and o eventually hold, in no predefined order. There is no
winning strategy since the environment can generate ¬i al-
l the time. As proposed in [Damm and Finkbeiner, 2011;
Almagor and Kupferman, 2020], one can relax the goal for
winning strategies and aim to obtain the best strategy we can
get among all alternative strategies. We call such strategy a
good-enough (GE)-strategy and extend this notion to LTLf .

Let α ∈ (2I)ω: for an LTL formula ϕ, α is said to be ϕ-
hopeful if there exists an infinite word β ∈ (2O)ω such that
α ⊗ β |= ϕ; for an LTLf formula ϕ, we say that α is ϕ-f-
hopeful if there exists an integer m ≥ 0 and a finite word
β = O0 · · ·Om ∈ (2O)+ such that α[0..m]⊗ β |= ϕ.
Definition 2 (Good-enough (GE)-strategy). Let γ be a strat-
egy. (1) γ is a GE-strategy for an LTL formula ϕ if for ev-
ery ϕ-hopeful infinite input word α ∈ (2I)ω , we have that
α ⊗ γ(α) |= ϕ. (2) γ is a GE-strategy for an LTLf formula
ϕ if for every ϕ-f-hopeful input word α ∈ (2I)ω , there exists
an integer m ≥ 0 such that α[0..m]⊗ γ(α)[0..m] |= ϕ.

The problem of good-enough (GE) LTL synthesis [Al-
magor and Kupferman, 2020] is to decide whether there ex-

ists a GE-strategy γ for ϕ and construct γ if so. We say a
strategy γ GE-realizes ϕ if γ is a GE-strategy for ϕ; we also
say that ϕ is GE-realizable if there exists a GE-strategy for ϕ.
Analogous notions extend to LTLf formulas as below.

Definition 3 (GE-synthesis for LTLf formulas). The good-
enough (GE)-synthesis problem for LTLf formulas is to de-
cide whether there exists a GE-strategy γ for a given LTLf

formula ϕ and construct γ if so.

Clearly, a winning strategy is a GE-strategy; a GE-strategy,
however, is not necessarily a winning strategy since, e.g., ϕ =
Fi∧Fo is not realizable but has a GE-strategy that outputs o at
least once. We have the following result about the synthesis
of GE-strategies for LTL.

Theorem 1 ([Almagor and Kupferman, 2020]). The problem
of the GE-synthesis for an LTL formula ϕ can be reduced to
finding a winning strategy γ for the formula (∃Oϕ) =⇒ ϕ.
Moreover, we can construct a DPA accepting the language
of the formula (∃Oϕ) =⇒ ϕ with a doubly exponential
blow-up with respect to |ϕ|.

Thus we can reduce the GE-synthesis problem for the LTL
formula ϕ to the game played on a DPA for (∃Oϕ) =⇒ ϕ.
Intuitively, for each infinite word α ∈ (2I)ω , the com-
putation α ⊗ γ(α) induced by the winning strategy γ for
(∃Oϕ) =⇒ ϕ satisfies either ∀O¬ϕ or ϕ, i.e., either α is
not ϕ-hopeful or α⊗γ(α) |= ϕ when α is ϕ-hopeful, respec-
tively. Consequently, a winning strategy γ for the formula
(∃Oϕ) =⇒ ϕ is a GE-strategy for ϕ.

3 Good-Enough Synthesis for LTLf Formulas
In this work, we study the problem of good-enough synthe-
sis for LTLf formulas, i.e., synthesizing a GE-strategy for a
given LTLf formula ϕ over P = I ∪ O, whenever possible.

3.1 Reduction to (∃Oϕ) =⇒ ϕ Does Not Work
for LTLf Formulas

As aforementioned, the GE-synthesis problem for an LTL
formula ϕ can be reduced to a game played on a DPA for
the formula (∃Oϕ) =⇒ ϕ. One may wonder whether the
GE-synthesis problem for an LTLf formula ϕ can analogous-
ly be reduced to a game played on a DFA for the formula
(∃Oϕ) =⇒ ϕ. Unfortunately, this is not the case, since the
finite trace semantics of LTLf can be exploited to synthesize
a strategy γ for (∃Oϕ) =⇒ ϕ that does not work for ϕ, as
formalized by Theorem 2 below.

Theorem 2. There is an LTLf formula ϕ such that a winning
strategy for the formula (∃Oϕ) =⇒ ϕ is not necessarily a
GE-strategy for ϕ.

For LTL formulas, the reduction to (∃Oϕ) =⇒ ϕ work-
s because LTL is interpreted over infinite words. Thus, the
quantified LTL formula ∃Oϕ [Sistla et al., 1987], as an as-
sumption, naturally allows us to focus only on the ϕ-hopeful
infinite input words, while for LTLf formulas, the quantified
LTLf formula ∃Oϕ is interpreted over finite words over 2I .
In particular, the assumption ∃Oϕ restricts us to finite input
words over 2I rather than the ϕ-f-hopeful words. The defini-
tion of GE-synthesis for LTLf formulas, however, is defined



with respect to infinite sequences over 2I . Consequently, we
cannot reduce the synthesis of a GE-strategy for the LTLf for-
mula ϕ to the synthesis of the winning strategy for the quan-
tified LTLf formula (∃Oϕ) =⇒ ϕ.
Example 1. An LTLf formula justifying Theorem 2 is ϕ =
Fi ∧ Fo, where i and o are the input and output variables,
respectively. There are GE-strategies for ϕ, such as the one
outputting o on seeing the input i or the one continuously
outputting o. There are, however, also winning strategies for
∃Oϕ =⇒ ϕ that are not GE-strategies for ϕ, such as the
one that outputs o/¬o if the first input is i/¬i, respectively,
and then only outputs ¬o.

3.2 Good-Enough Synthesis as Reduction to LTL
As shown by [De Giacomo and Vardi, 2013], given an LTLf

formula ϕ over P , one can construct an LTL formula t(ϕ)
over propositions P ∪ {tail} in linear time, where tail /∈ P is
a fresh variable, such that ϕ is satisfiable if and only if t(ϕ) is
satisfiable. That is, one can reduce the LTLf satisfiability of
ϕ to the LTL satisfiability of t(ϕ). The variable tail is used to
indicate when a finite word in L(ϕ) terminates. The resulting
LTL formula t(ϕ) has the following language.
Lemma 1 ([De Giacomo and Vardi, 2013]). L(t(ϕ)) = {λ⊗
{tail}∗ | λ ∈ L(ϕ) } · (2P)ω .

Intuitively, given a finite word u ∈ L(ϕ), tail holds for the
first |u| positions and ¬tail holds forever afterwards.

For synthesis, the fresh proposition tail /∈ P is under the
control of the system. It is further shown in [Zhu et al., 2017]
that this reduction also works for LTLf realizability and syn-
thesis, i.e., ϕ is realizable if and only if t(ϕ) is realizable;
also, a winning strategy for t(ϕ) yields a winning strategy for
the LTLf formula ϕ. We now show that this reduction works
also for the GE-synthesis for LTLf formulas.

Lemma 2. Let ϕ be an LTLf formula and α ∈ (2I)ω . Then
α is ϕ-f-hopeful if and only if α is t(ϕ)-hopeful.
Lemma 3. Let ϕ be an LTLf formula. Then (1) ϕ is GE-
realizable iff t(ϕ) is GE-realizable; and (2) a GE-strategy γ
for t(ϕ) is also a GE-strategy for ϕ.

We present now the main result of this subsection, which
is a direct consequence of Lemma 3.
Theorem 3. The GE-synthesis problem for an LTLf formula
ϕ with respect to 〈I,O〉 can be reduced to the GE-synthesis
problem for the LTL formula t(ϕ) with respect to 〈I,O ∪
{tail}〉.

Thanks to Theorem 3, we can reduce the GE-synthesis
problem for LTLf formulas to the GE-synthesis problem for
LTL formulas. This reduction, however, is not computation-
ally competitive when compared with our specialized synthe-
sis algorithm for LTLf formulas, given below in Section 3.3,
as experiments show (cf. Section 4).

3.3 Synthesizing GE-Strategies for LTLf

Formulas via DBA Games
By Theorem 2, for LTLf formulas, the problem of GE-
synthesis for ϕ cannot be reduced to the classical synthe-
sis problem for (∃Oϕ) =⇒ ϕ. Nonetheless, due to

Lemma 3, we can just synthesize a winning strategy γ for
∃(O ∪ {tail})t(ϕ) =⇒ t(ϕ), since γ is also a GE-strategy
for the LTLf formula ϕ. The key issue with this approach
is that one has to, directly or indirectly, construct a DPA for
the formula ∃(O ∪ {tail})t(ϕ) =⇒ t(ϕ), which is general-
ly believed to be the main bottleneck of the synthesis proce-
dure [Kupferman, 2012].

Our key observation for the synthesis of a GE-strategy for
an LTLf formula is that we can construct a DBA accepting
the language of ∃(O ∪ {tail})t(ϕ) =⇒ t(ϕ) based on the
construction of NFAs and DFAs from ϕ. This allows us to
exploit algorithms, specialized for LTLf , for constructing au-
tomata on finite words, which are easier and more efficient in
practice than those building automata on infinite words [Zhu
et al., 2017; Wells et al., 2020]. In the remainder of the sec-
tion we show how this is achieved; we start by formalizing
the language of ∃(O ∪ {tail})t(ϕ) =⇒ t(ϕ), following
directly from Lemma 2 since t(ϕ) is an LTL formula and
¬(∃(O ∪ {tail})t(ϕ)) ≡ ∀(O ∪ {tail})¬t(ϕ) recognizes the
infinite words over I that are not t(ϕ)-hopeful.
Lemma 4. Let ϕ be an LTLf formula; then it holds that
L(∃(O∪ {tail})t(ϕ) =⇒ t(ϕ)) = L(t(ϕ))∪ {α ∈ (2I)ω |
α is not ϕ-f-hopeful }.

In the following, we show that instead of constructing a
DPA for L(t(ϕ)) ∪ {α ∈ (2I)ω | α is not ϕ-f-hopeful }, we
can construct a DBA accepting it. Consequently, the problem
of synthesizing a GE-strategy for ϕ is reduced to solving a
game played on a DBA B rather than on a DPA, which is
much easier to solve [Mazala, 2002].

In order to construct the desired DBA B, we first build a
DBA B1 for L(t(ϕ)), which accounts for the situation where
a GE-strategy must generate a computation satisfying ϕ on
a given ϕ-f-hopeful input sequence. Then we build a DBA
B2 for {α ∈ (2I)ω | α is not ϕ-f-hopeful }. Finally, we take
their union product B accepting exactly the computations for
synthesizing GE-strategies.
Theorem 4. Let γ be a winning strategy for the system that
produces computations in L(B) = L(B1) ∪ L(B2). Then γ
is a GE-strategy for ϕ.

3.4 DBA Construction
We show how to construct the DBAs B1, B2, and B in detail.

Construction of B1

In order to construct the DBA B1 accepting all computations
generated by a GE-strategy on a given ϕ-f-hopeful infinite
input sequence, which clearly satisfy ϕ, we first construct
a DFA D accepting L(ϕ), with a doubly exponential blow-
up [De Giacomo and Vardi, 2015]. Then we get the DBA B1

from D so that it accepts the language {λ ⊗ {tail}∗ | λ ∈
L(ϕ) = L(D) } · (2P)ω , where tail is a fresh variable not
present in P . Note that in the DBA game, the fresh variable
tail is controlled by the system as an output variable.
Definition 4. Let D = (2P , S, ι,∆, F ) be the DFA for
ϕ. Then the DBA B1 is the tuple (2P∪{tail}, S1, ι1,∆1, F1),
where S1 = S ∪ {>} with > /∈ S being a fresh state, ι1 = ι
is the initial state, F1 = {>} is the set of accepting states,
and ∆1 is defined as follows: (1) if ∆(q, a) = q′, then



∆1(q, a ∪ {tail}) = q′; (2) if q ∈ F , then ∆1(q, a) = >
for each a ∈ 2P ; and (3) ∆1(>, a) = > for each a ∈ 2P .

Note that the transition function ∆1 may be undefined for
some state q ∈ S1 and assignment a ∈ (2P∪{tail}). Intuitive-
ly, in Definition 4, we just use “tail” to mark when a finite
word in L(ϕ) terminates. Since the number of states in D is
at most doubly exponential in the length of ϕ [De Giacomo
and Vardi, 2015], we directly obtain the following result.
Lemma 5. Let B1 be the DBA constructed in Definition 4.
Then L(B1) = {λ ⊗ {tail}∗ | λ ∈ L(ϕ) } · (2P)ω and B1

has 22
O(|ϕ|)

states.

Construction of B2

We now construct the DBA B2 that accepts all infinite se-
quences λ ∈ (2I)ω for which no strategy can generate a
computation satisfying ϕ. That is, L(B2) = {α ∈ (2I)ω |
α is not ϕ-f-hopeful }. To construct the DBA B2, we take the
following three steps.
Step 1. Construct an NFA N accepting L(ϕ) with a single
exponential blow-up [De Giacomo and Vardi, 2015] and then
make all accepting states of N sink accepting states with a
self-loop transition labeled with true = 2P∪{tail}. Thus we
have that L(N) = L(ϕ) · true∗ and N has 2O(|ϕ|) states.
Step 2. Existentially quantify out all O-variables on the
transitions of N and let N ′ be the resultant NFA. Let ∆
and ∆′ be the transition functions of N and N ′, respective-
ly. Then if q′ ∈ ∆(q, a) for a ∈ 2P , then we have that
q′ ∈ ∆′(q, a \ O). We then treat the modified NFA N ′ as an
NBA A. Intuitively, the NBA A accepts all input sequences
α = I0, I1, · · · ∈ (2I)ω that are ϕ-f-hopeful. That is, we
have that L(A) = {α ∈ (2I)ω | α is ϕ-f-hopeful }. Then
we just need to complement the NBA A at the next step since
the desired DBA B2 accepts the complementary language of
A. Note that all accepting states of A are sink states with a
self-loop on true.
Step 3. Determinize the NBAAwith a standard subset con-
struction [Hopcroft et al., 2007] and set all states that do not
contain a sink accepting state of A as accepting states, which
yields the DBA B2, which we assume without loss of gener-
ality to be complete. Since all accepting states of A are sink
states, all states reachable from a nonaccepting state of B2

will also be nonaccepting, which makes it possible to com-
plement the NBA A with a simple subset construction and
then to reverse the set of accepting states. Note that com-
plementing general NBAs is much more complicated and ex-
pensive [Vardi, 2007; Yan, 2008] than a subset construction.
Intuitively, B2 accepts all infinite sequences α ∈ (2I)ω that
are not ϕ-f-hopeful, i.e., no strategy at all can generate a com-
putation for α that satisfies ϕ.
Lemma 6. LetB2 be the DBA constructed above for ϕ. Then
L(B2) = {α ∈ (2I)ω | α is not ϕ-f-hopeful } and B2 has
22

O(|ϕ|)
states.

Construction of B
The DBA B is then the union product of B1 and B2 such that
L(B) = L(B1)∪L(B2). Since the accepting states inB1 and
B2 are sink states, we can just compute the union product as

it is done for DFAs [Hopcroft et al., 2007]. Let B1 = (2P ∪
{tail}, S1, ι1,∆1, F1) and B2 = (2I , S2, ι2,∆2, F2). Then
we have B = (2P ∪{tail}, S1×S2, (ι1, ι2),∆1×∆2, (S1×
F2) ∪ (F1 × S2)). We remark that this union product can be
efficiently performed symbolically.

Strategy Extraction
To extract a winning strategy for the system on the DBA B,
we use a DBA game solving algorithm, working in polyno-
mial time with respect to the number of states of B [Maza-
la, 2002]. The algorithm determines whether from the ini-
tial state the system is sure to win the game. In this case,
a winning strategy is given as a Mealy machine producing
the appropriate system’s output for the current state and in-
put. See [Mazala, 2002] for more details about solving DBA
games and extracting winning strategies.

3.5 Correctness and Complexity
Theorem 5. Let ϕ be an LTLf formula and B the DBA con-
structed in Section 3.4. (1) There exists a winning strategy for
the DBA game played on B if and only if ϕ is GE-realizable.
(2) A winning strategy γ for the DBA game played on B is
also a GE-strategy for ϕ.

It is clear that the LTLf GE-realizability/GE-synthesis
problem is in 2EXPTIME. Similarly to [Rosner, 1991, Sec-
tion 3.2] in the LTL setting, one can also construct from a giv-
en 2EXPTIME Turing machine M an LTLf formula ϕM that
is realizable if and only if M accepts the empty tape, where
all input sequences are ϕM -f-hopeful. Hence checking GE-
realizability of ϕM is equivalent to checking its realizability.
Thus the 2EXPTIME-hardness result follows.
Theorem 6. The synthesis problem of GE-strategies for LTLf

specifications is 2EXPTIME-complete.

4 Experimental Evaluation
4.1 Implementation
We have extended the LISA tool described in [Bansal et al.,
2020] with an implementation of the synthesis algorithm de-
scribed in Section 3; we used MONA [Henriksen et al., 1995]
to construct DFAs and NFAs from an LTLf formula, as de-
scribed in [Zhu et al., 2019]. The DFAs and NFAs are first
constructed explicitly, then encoded symbolically by means
of well-known standard techniques (see, e.g., [Ferrara et al.,
2005; Bansal et al., 2020]); this allows us to build their union
product efficiently.

We implemented two versions of the construction for the
automaton B2 in LISA: one using NFAs as in Section 3
and one using only DFAs (without affecting the correctness
of our algorithm). While this adds in theory an exponential
blowup, in practice working with DFAs often yields better
performance than with NFAs [Tabajara and Vardi, 2020]. The
comparison between the two approaches given below in Sec-
tion 4.3 confirms this, so we use DFAs by default.

4.2 Evaluation Setting
To evaluate the effectiveness of the strategy synthesis algo-
rithm proposed in Section 3, we compared LISA with a mod-
ified version of BOSY [Faymonville et al., 2017] and of LTL-



Outcome LISA BOSY LTLSYNT
strong weak strong weak strong weak

realizable 1840 1838 832 831 1123 1105
unrealizable 49 50 0 0 18 16

timeout 4 6 598 566 339 366
out of memory 9 8 70 66 4 3
other failures 9 9 411 448 427 421

Table 1: Summary of the outcomes of the experiments

SYNT, part of SPOT [Duret-Lutz et al., 2016], so to allow
them to support GE-synthesis.

Since BOSY and LTLSYNT do not support LTLf native-
ly, we used SPOT to convert each LTLf formula ϕ as t(ϕ).
The modified BOSY first constructs a universal co-Büchi au-
tomaton accepting (∃(O ∪ {tail})t(ϕ)) =⇒ t(ϕ) and then
uses the built-in bounded synthesis techniques [Faymonville
et al., 2017] on this automaton to synthesize the GE-strategy.
The modified LTLSYNT first constructs a DPA that accepts
(∃(O ∪ {tail})t(ϕ)) =⇒ t(ϕ) and then solves the DPA
game with built-in solvers [Duret-Lutz et al., 2016].

LTLSYNT got the second place in SYNTCOMP 20201; we
did not compare with the winner Strix [Meyer et al., 2018]
since its architecture does not allow us to add support for GE-
synthesis with reasonable effort, as we did for the other tools.

As benchmarks, we collected all benchmarks available on
the past SYNTCOMP competitions website2, resulting in 294
benchmark files. We then used SYFCO3 to translate them to
the JSON format accepted by each tool. We considered also
the 1617 benchmarks used in [Bansal et al., 2020], already in
the appropriate JSON format, for a total of 1911 execution-
s. We considered all formulas in the benchmarks as LTLf

formulas and then generated two versions of the files accord-
ing to the strong/weak semantics of the X next operator (cf.
Section 2), which are encoded in the benchmark files by the
operators X[!] and X, respectively.

We performed our experiments on a desktop PC equipped
with a 3.4 GHz Intel i7-6700 processor and 8 GB of RAM, of
which 5 GB were assigned to the experiments; the operating
system was Ubuntu 18.04. We used BENCHEXEC4 to trace
the execution of the tools; we imposed a timeout of 10 min-
utes for each benchmark. We use the following conventions
in the scatter plots presented in the remainder of this section:
a mark placed on the horizontal/vertical dotted line at time
600 means that the corresponding tool went timeout; a mark
on the dashed line, instead, stands for the tool went out of
memory during the execution; a mark on the top/right border
of the plot indicates that the tool failed for other motivations.

4.3 Experimental Results
Overview of the results. Table 1 summarizes the outcomes
of the different tools on the two versions of the benchmark-
s. As we can see, LISA has been able to solve consider-

1http://www.syntcomp.org/syntcomp-2020-results/
2https://syntcomp.react.uni-saarland.de/
3https://github.com/reactive-systems/syfco/
4https://github.com/sosy-lab/benchexec/
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Figure 1: Comparison of LISA and LTLSYNT on the benchmarks
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Figure 2: Comparison of LISA using DFA and NFA construction

ably more experiments than both BOSY and LTLSYNT; out of
1911 benchmarks, LISA failed only on less than 25; BOSY
and LTLSYNT, instead, failed on more than 1000 and 750
experiments, respectively, of which roughly half caused by
timeout. It is interesting to observe in Table 1 that BOSY has
never returned unrealizable. This happens also for cases on
which both LISA and LTLSYNT returned unrealizable; so it
seems BOSY returns some wrong answer. Given these differ-
ences in the outcomes, we exclude BOSY from the remainder
of our experimental evaluation.

Comparison between LISA and LTLSYNT. In Figure 1 we
compare the execution running time of LISA and LTLSYNT;
the left plot is relative to the strong X semantics while the
right plot to the weak X semantics. As we can see, in both
semantics LISA is almost always considerably much faster
than LTLSYNT in either synthesizing a GE-strategy or finding
that there is no GE-strategy, as indicated by the large majority
of the points above the diagonal dotted line. There are few
cases on which LISA crashed, corresponding to the points on
the plot right border, as already mentioned in the summary of
the experiments above.

Comparison of LISA using DFA and NFA construction.
We also compared the running time of LISA when using a D-
FA instead of an NFA for the construction of the DBAB2 (cf.
Sections 3.4 and 4.2); it is shown in Figure 2. As we can see
from the plots, even though constructing the NFA is usually
faster than generating the DFA, the latter gives a better overall
performance, as indicated by the majority of the points above
the diagonal, in particular for executions requiring more than
0.25 seconds. This can be motivated by the blowup caused

https://syntcomp.react.uni-saarland.de/
https://github.com/reactive-systems/syfco/
https://github.com/sosy-lab/benchexec/


by the determinization step in the construction of the DBA
B2 (cf. Section 3.4), which can be mitigated when working
with DFAs from the beginning.

5 Related Work
The GE-synthesis problem for LTLf formulas can be seen as
a synthesis problem for an LTLf formula ϕ under the quanti-
fied LTL assumption ∃Ot(ϕ), though without explicitly giv-
ing the assumption. There are works [Camacho et al., 2018;
Zhu et al., 2020; Giacomo et al., 2020] about the synthesis
problem where assumptions are explicitly given as an LTL
formula ψ; ψ is also used to restrict the synthesis problem
to certain environment behaviours we care about: in [Zhu
et al., 2020], the assumption is restricted to simple fairness
and stability, which is then reduced to solving a so-called fair
and stable DFA game, respectively. The assumption is fur-
ther extended in [Giacomo et al., 2020] to the whole set of
LTL formulas, which however relies on solving DPA games.
In [Camacho et al., 2018], the assumption is specified as a
conjunction of a safe LTL formula ψs and a co-safe LTL for-
mula ψc, i.e., the LTL formula ψs ∧ ψc.

Our work and the works in [Camacho et al., 2018; Zhu et
al., 2020; Giacomo et al., 2020] consider a similar problem
(i.e., the synthesis of a strategy so to satisfy a given LTLf

formula given that the environment behaves nicely) in two d-
ifferent scenarios; the main difference is that the environment
assumptions in their problems are given explicitly as LTL for-
mulas, while our problem does not need to take an environ-
ment assumption as input. Even if we see the ϕ-f-hopeful
sequences as an assumption, there is no trivial way to model
them as an LTL formula from the given LTLf formula ϕ, so
to formalize the concept of ϕ-f-hopeful sequence.

Below we focus on a detailed comparison with [Camacho
et al., 2018], where the LTLf synthesis problem for ϕ un-
der the safe and co-safe assumption ψs ∧ ψc has also been
reduced to solving a DBA game. Thus, they can use one D-
FA for ψs, one DFA for ψc and one DFA for ϕ, and then
compose them via automata product operation to obtain the
DBA game. In contrast, our constructed NFA and DFA are
both obtained from the input LTLf formula ϕ, our only in-
put. A synthesis problem for a kind of LTLf formulas with
quality measures, denoted by LTLf [F ], has been considered
in [Camacho et al., 2018]: instead of a formula being either
totally satisfied or totally violated by a computation, a value
between 0 and 1 by the weight functions f ∈ F indicates its
degree of satisfaction. Different strategies can then be com-
pared according to the so called best guaranteed value (bgv),
the minimum value among the values of the resultant compu-
tations induced by a strategy. A strongly bgv-optimal strate-
gies for LTLf [F ] is a strategy that desires to obtain the best
worst-case value. We conjecture that strongly bgv-optimal
strategies degenerate to our GE-strategies when the quality
is set to one and the LTL assumption ψs ∧ ψc is discarded;
we leave as future work the confirmation of this conjecture.
Note that the GE-synthesis problem we consider here, though
possibly identified as a subclass of synthesis of strongly bgv-
optimal strategies now, is still novel just like the interesting
subclass called GR(1) [Bloem et al., 2012] of full LTL syn-

thesis, which allows for specialized and practical algorithms
and draws a lot of researchers to work on it.

We remark that the 2EXPTIME-completeness established
in [Camacho et al., 2018] applies only to LTLf synthesis
with safe and co-safe LTL assumptions and no such result is
claimed for synthesizing strongly bgv-optimal strategies from
LTLf formulas with explicit assumptions and quality mea-
sures. Our 2EXPTIME-completeness is for synthesizing GE-
strategies only for LTLf formulas. We note, however, that, if
the conjecture above is correct, then our hardness result ex-
tends to the synthesis of strongly bgv-optimal strategies.

6 Conclusion and Future Work
To the best of our knowledge, this is the first time the problem
of GE-synthesis for LTLf formulas has been considered. The
main contribution of this work is that we proposed to solve
the GE-synthesis problem for LTLf formulas by reducing it
to a DBA game. Our specific GE-synthesis algorithm takes
advantage of the construction of NFAs and DFAs, which is
much easier than the direct or indirect construction of DPAs
by going through LTL synthesis. The empirical evaluation on
benchmarks from SYNTCOMP and literature confirmed the
merits of our specific approach. We observe that currently
the bottleneck of our approach is the size of the DBAs, which
invites for further improvement as future work.
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