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Abstract
While recently developed Angluin-style learning1

algorithms for ω-automata have much in common2

with her classic DFA learning algorithm, there is a3

huge difference in the cost of the queries. These4

active learning algorithms work with an oracle that5

can answer membership and equivalence queries.6

For ω-regular languages, however, the target is to7

learn nondeterministic Büchi automata through the8

vehicle of Families of DFAs (FDFAs). While the9

assumption that membership queries are relatively10

cheap remains reasonable, equivalence queries for11

nondeterministic automata are PSPACE-complete,12

which restricts their use.13

We develop efficient techniques for the cases,14

where we learn deterministic Büchi (or co-Büchi)15

automata. This is based on the observation that16

some classes of FDFAs can be used to learn de-17

terministic Büchi automata for DBA recognisable18

languages, rather than having to resort to nondeter-19

ministic ones. Different to the high—PSPACE—20

cost of testing language equivalence for NBAs, this21

operation is cheap—NL—for DBAs (and DCAs),22

which makes equivalence queries realistic.23

1 Introduction24

In her seminal paper, Angluin [Angluin, 1987] proposed a25

learning framework that can learn an automaton representa-26

tion of an unknown regular language R from an oracle. The27

learning algorithm or the learner can interact with the oracle28

by means of two types of queries, namely membership and29

equivalence queries. While membership queries ask whether30

a word u belongs to R, equivalence queries ask whether a31

given automaton correctly recognises the target language R.32

After asking a certain number of membership queries, the33

learner is able to propose a conjectured automaton and ask34

an equivalence query about the conjecture. When the or-35

acle returns a positive answer to an equivalence query, the36

learner has completed his task and successfully learned R;37

otherwise, the learner will receive a counterexample from the38

oracle, which he will use to refine the current conjectured au-39

tomaton. This learning procedure will continue until a correct40

automaton of R has been learned.41

Since its introduction, Angluin-style learning frameworks 42

have, for example, been applied in learning assumptions for 43

compositional verification [Cobleigh et al., 2003], detecting 44

bugs in network protocol implementations [de Ruiter and 45

Poll, 2015], and extracting automata models for recurrent 46

neural networks [Weiss et al., 2018]. 47

Angluin-style learning has initially focused on learning au- 48

tomata that represent regular languages, especially determin- 49

istic finite automata (DFAs) [Angluin, 1987; Isberner et al., 50

2014; Vaandrager et al., 2022], but also nondeterministic fi- 51

nite automata [Bollig et al., 2009], and alternating automata 52

[Angluin et al., 2015]. More recently, they have branched out 53

into learning ω-regular languages represented by ω-automata, 54

so far focusing on nondeterministic Büchi automata (NBAs) 55

[Farzan et al., 2008; Li et al., 2021], where the current vehi- 56

cle for learning them are families of DFAs (FDFAs) [Angluin 57

and Fisman, 2016; Li et al., 2023a]. 58

While NBAs are popular in verification, they are hard 59

to reason about, because equivalence checking of NBAs is 60

PSPACE-complete. While FDFAs themselves are easy to ma- 61

nipulate [Angluin et al., 2018], they have not yet found appli- 62

cations outside of learning. 63

For languages recognisable by deterministic Büchi au- 64

tomata (DBAs) or deterministic co-Büchi automata (DCAs), 65

we may well encounter a situation, where the oracle is in ef- 66

fect in possession of a DBA or a DCA to evaluate. It will then 67

be easy for her to answer equivalence questions to DBAs or 68

DCAs, respectively, whereas the answer to a PSPACE-hard 69

question might require a trip to Delphi, while we can turn to 70

a run-of-the-mill oracle if our conjecture automata are also 71

presented as DBAs and DCAs, respectively. 72

But can we make use of these cheap equivalence queries? 73

Considering that FDFAs naturally translate to NBAs, the an- 74

swer to this question is not straightforward. However, we 75

observe that a translation from FDFAs in a particular normal 76

form—limit FDFAs [Li et al., 2023a]—to a DBA that recog- 77

nises a sub-language of the limit FDFAs, but will, for DBA 78

recognisable languages, converge to the full language when 79

the learning of the limit FDFA is complete. The tricky bit 80

is to cover the case, where the counterexample is not in the 81

language of the conjectured DBA, but is both in the language 82

of the FDFA (or: the language of the NBA that represents it) 83

and the target language. 84

The refinement of the FDFA for this case is slightly more 85



involved than usual, but this complication is minor compared86

to the significant decrease in complexity—from PSPACE to87

NL—for the equivalence query itself. This balance of the88

expressiveness of learned languages and the complexity of89

equivalence queries provides the first Angluin-style learn-90

ing algorithm for DBAs, the main contribution of this paper.91

Moreover, since DCAs are dual to DBAs, our algorithm can92

be easily adapted for learning DCAs by learning a DBA of93

the complement language of the target co-Büchi language.94

Related work. Recent work has studied learning DBAs95

(and even deterministic parity automata) [Michaliszyn and96

Otop, 2022]; however, this work not only requires the ora-97

cle to answer membership and equivalence queries, but also98

needs to know the loop index of each queried infinite word99

in the target automaton. Such queries about the loop index100

of infinite words may not be feasible in some scenarios such101

as learning a representation of black-box systems where the102

inner structure of the system is unknown; it therefore does103

not fit into Angluin’s learning framework. Angluin’s learn-104

ing framework can be classified as active learning, in con-105

trast to passive learning, where automata are learned from a106

given set of labelled samples. We note that there is a passive107

learning algorithm for DBAs proposed in [Bohn and Löding,108

2022], which is orthogonal to our work. Angluin-style learn-109

ing framework has been suggested for the smaller class of110

weak Büchi automata [Maler and Pnueli, 1995]. This work,111

however, only covers a strict subset of DBA languages be-112

having like DFAs in which the states of weak Büchi automata113

simply represent the right congruence classes [Myhill, 1957;114

Nerode, 1958].115

2 Preliminaries116

In the whole paper, we fix a finite alphabet Σ. A word is a117

finite or infinite sequence of letters in Σ; ε denotes the empty118

word. Let Σ∗ and Σω denote the set of all finite and infinite119

words (or ω-words), respectively. In particular, we let Σ+ =120

Σ∗\{ε}. A finitary language is a subset of Σ∗; an ω-language121

is a subset of Σω . Let ρ be a sequence; we denote by ρ[i] the122

i-th element of ρ and by ρ[i..k] the subsequence of ρ starting123

at the i-th element and ending at the (k− 1)-th element when124

0 ≤ i < k, and the empty sequence ε when i ≥ k. We denote125

by ρ[i . . .] the subsequence of ρ starting at the i-th element126

when i < |ρ|, and the empty sequence ε when i ≥ |ρ|. Given127

a finite word u and a word w, we denote by u · w (uw, for128

short) the concatenation of u and w.129

Transition system. A (nondeterministic) transition system130

(TS) is a tuple T = (Q, q0, δ), where Q is a finite set of states,131

q0 ∈ Q is the initial state, and δ : Q×Σ → 2Q is a transition132

function. We also lift δ to sets as δ(S, σ) :=
⋃

q∈S δ(q, σ).133

We also extend δ to words in a usual way, by letting δ(S, ε) =134

S and δ(S, u · a) = δ(δ(S, u), a), where u ∈ Σ∗ and a ∈ Σ.135

Automata. An automaton on finite words is called a non-136

deterministic finite automaton (NFA). An NFA A is formally137

defined as a tuple (T , F ), where T is a TS and F ⊆ Q is a set138

of final states. An automaton on ω-words is called a nondeter-139

ministic Büchi automaton (NBA). An NBA B is represented140

as a tuple (T ,Γ) where T is a TS and Γ ⊆ {(q, a, q′) : q, q′ ∈141

Q, a ∈ Σ, q′ ∈ δ(q, a)} is a set of accepting transitions. An 142

NFA A is a deterministic finite automaton (DFA) if, for each 143

q ∈ Q and a ∈ Σ, |δ(q, a)| ≤ 1. Deterministic Büchi au- 144

tomata (DBAs) are defined similarly and thus Γ is a subset of 145

{(q, a) : q ∈ Q, a ∈ Σ}, since the successor q′ is determined 146

by the source state and the input letter. 147

A run of an NFA A on a finite word u of length n ≥ 0 is a 148

sequence of states ρ = q0q1 · · · qn ∈ Q+ such that, for every 149

0 ≤ i < n, qi+1 ∈ δ(qi, u[i]). We write q0
u−→qn if there is a 150

run from q0 to qn over u. A finite word u ∈ Σ∗ is accepted by 151

an NFA A if there is a run q0 · · · qn over u such that qn ∈ F . 152

Similarly, an ω-run of A on an ω-word w is an infinite se- 153

quence of transitions ρ = (q0, w[0], q1)(q1, w[1], q2) · · · such 154

that, for every i ≥ 0, qi+1 ∈ δ(qi, w[i]). Let inf(ρ) be the 155

set of transitions that occur infinitely often in ρ. An ω-word 156

w ∈ Σω is accepted by an NBA A if there is an ω-run ρ of A 157

over w such that inf(ρ)∩Γ ̸= ∅. The finitary language recog- 158

nised by an NFA A, denoted L∗(A), is defined as the set of 159

finite words accepted by it. Similarly, we denote by L(A) the 160

ω-language recognised by an NBA A, i.e. the set of ω-words 161

accepted by A. NFAs/DFAs accept exactly regular languages 162

while NBAs recognise exactly ω-regular languages. 163

Deterministic co-Büchi automata (DCA) are dual to DBAs 164

and have the same structure as DBAs except that w is ac- 165

cepted by a DCA if its run satisfies that inf(ρ) ∩ Γ = ∅. For 166

DCAs, Γ is called the set of rejecting transitions. 167

Right congruences. A right congruence (RC) relation is an 168

equivalence relation ∽ over Σ∗ such that x ∽ y implies xv ∽ 169

yv for all v ∈ Σ∗. We denote by | ∽ | the index of ∽, i.e. 170

the number of equivalence classes of ∽. A finite RC is an RC 171

with a finite index. We denote by Σ∗/∽ the set of equivalence 172

classes of Σ∗ under ∽. Given x ∈ Σ∗, we denote by [x]∽ the 173

equivalence class of ∽ that x belongs to. 174

For a given regular language R, one can define the RC ∽R 175

of R as x ∽R y if, and only if, ∀v ∈ Σ∗. xv ∈ R ⇐⇒ yv ∈ 176

R [Myhill, 1957; Nerode, 1958]. The RC ∽R also defines the 177

minimal DFA D of R, in which each state of D corresponds 178

to an equivalence class in Σ∗/∽. Formally, the TS T [∽] of D 179

is defined as follows. 180

Definition 1 ([Myhill, 1957; Nerode, 1958]). Let ∽ be an RC 181

of finite index. The TS T [∽] induced by ∽ is a tuple (S, s0, δ) 182

where S = Σ∗/∽, s0 = [ε]∽, and for each u ∈ Σ∗ and 183

a ∈ Σ, δ([u]∽, a) = [ua]∽. 184

The minimal DFA D of R is the DFA D = (T [∽R], F∽R
) 185

where F∽R
collects all classes [u]∽R

such that u ∈ R. 186

Ultimately periodic words. For ω-regular languages, we 187

only need to consider a type of ω-words called ultimately 188

periodic (UP) words; a UP-word w is of the form uvω , 189

where u ∈ Σ∗ and v ∈ Σ+. For an ω-language L, let 190

UP(L) = {uvω ∈ L | u ∈ Σ∗ ∧ v ∈ Σ+ } denote the 191

set of all UP-words in L. By [Büchi, 1962; Calbrix et al., 192

1993], two ω-regular languages L and L′ are equivalent if, 193

and only if, UP(L) = UP(L′). That is, the set of UP-words 194

of an ω-regular language L uniquely characterises L. 195

As aforementioned, a UP-word w = uvω can be denoted 196

as a pair of finite words such as (u, v), (uv, v) and other valid 197

pairs; they are all called a decomposition of w. 198



Families of DFAs (FDFAs). FDFAs have been introduced199

to recognise an ω-regular language L by accepting the de-200

compositions of UP(L) [Angluin et al., 2018].201

Definition 2 ([Angluin et al., 2018]). An FDFA is a pair F =202

(M, {N q}) consisting of a leading DFA M and of a progress203

DFA N q for each state q in M.204

Intuitively, for the FDFA F = (M, {N q}) to accept a UP-205

word uvω ∈ UP(L), the leading DFA M first consumes the206

finite prefix u, reaching some state q and, for each state q of207

M, the progress DFA N q accepts the loop word v. Note that208

the leading DFA M of every FDFA is in fact only a TS since209

it does not make use of final states.210

Let A be a deterministic automaton with TS T = (Q, q0, δ)211

and x ∈ Σ∗. We denote by A(x) the state δ(q0, x). Each212

FDFA F accepts a set of UP-words UP(F) by using the fol-213

lowing acceptance condition.214

Definition 3 (Acceptance). Let F = (M, {N q}) be an215

FDFA and w be a UP-word. A decomposition (u, v) of w216

is normalised with respect to F if M(u) = M(uv). A de-217

composition (u, v) is accepted by F if (u, v) is normalised218

and v ∈ L∗(N q) where q = M(u). Then, w is accepted by219

F if there exists a decomposition (u, v) of w accepted by F .220

So, we can also see UP(F) as the set of words recognised221

by F . In the remainder of the paper, we fix a target DBA-222

language L unless stated otherwise.223

3 Outline of Our Algorithm224

We give an overview of our DBA learning algorithm in this225

section; the framework is depicted in Fig. 1. Assume that we226

have a DBA oracle who knows L and can answer member-227

ship queries about L and equivalence queries about whether228

a given DBA recognises L. We note that using equivalence229

queries that involve NBA operations would significantly in-230

crease the complexity for resolving equivalence queries and231

lose all the advantage we aim to reap.
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Figure 1: Overview of our DBA learning framework

232
Our DBA learner is comprised of three components: the233

limit FDFA learner (cf. Sect. 5), the component transforming234

an FDFA F to a DBA B[FB ] (cf. Sect. 4), and a counterex-235

ample (CEX) analysis component (cf. Sect. 6). Limit FDFAs236

are a type of canonical FDFAs that can easily decide DBA-237

languages [Li et al., 2023a] and thus are a natural choice in238

our DBA learning algorithm. In a nutshell, our DBA learner,239

corresponding to the dashed box on the left in Fig. 1, tries to 240

use the limit FDFA learner to learn the canonical form of limit 241

FDFAs F (and thus the sink FDFA FB in Sect. 4) [Li et al., 242

2023a] and then converts the sink FDFA FB to a language- 243

equivalent DBA B[FB ]. 244

More precisely, the DBA learner uses the FDFA learner to 245

learn the limit FDFA F (and thus B[FB ]) by answering mem- 246

bership and equivalence queries posed by the limit FDFA 247

learner, through interacting with the DBA oracle. We will use 248

superscripts, FDFA and DBA, to distinguish the equivalence 249

queries posed by our limit FDFA learner and the DBA learner 250

respectively. To answer a membership query MQ(u, v), the 251

DBA learner simply forwards the answer to the membership 252

query MQ(uvω) obtained from the DBA oracle. Answering 253

an equivalence query EQFDFA(F) can be more involved. 254

The DBA learner needs to first construct a DBA B[FB ] 255

from F using Definition 7. (FB is obtained from F by only 256

allowing sink final states.) Then the DBA learner poses an 257

equivalence query EQDBA(B[FB ]) to the DBA oracle. If the 258

DBA oracle returns “Yes”, the DBA learner can just output 259

the learned DBA B[FB ]: it has completed the learning task. 260

Otherwise, the DBA learner receives “NO” along with a CEX 261

uvω ∈ L ⊖ L(B[FB ]). Then the DBA learner has to utilise 262

the CEX analysis component to extract a CEX (u′, v′), which 263

may not be a decomposition of uvω but be good for refin- 264

ing F (cf. Definition 8). Observe that there is a dashed line 265

labelled with F and B[FB ] from the DBA construction com- 266

ponent to the CEX analysis component; this means that we 267

will need F and B[FB ] in the CEX analysis. The above pro- 268

cedure will continue until a correct DBA has been learned. 269

The main challenge here is that the DBA B[FB ] is only 270

guaranteed to be language-equivalent if F is in the canonical 271

form of limit FDFAs (cf. Lemma 1); before that, it will ac- 272

cept a sub-language, i.e., UP(L(B[FB ])) ⊆ UP(F). This is 273

because B[FB ] is obtained by first making all final states of F 274

non-final, except for where a final state is a sink (and we thus 275

refer to these states as sink final states; there need not exist 276

one). However, a standard CEX for the limit FDFA learner 277

to refine F needs to be in the symmetric difference between 278

UP(F) and L, i.e., u · vω ∈ UP(F) ⊖ UP(L), but we only 279

have uvω ∈ L ⊖ L(B[FB ]). As a consequence, the CEX re- 280

turned for B[FB ] from equivalence queries cannot always be 281

directly used to refine the current conjectured FDFA F . 282

We overcome this challenge by carefully categorising a 283

CEX and then extracting a CEX for F from uvω ∈ L ⊖ 284

L(B[F ]) accordingly, possibly with the help of a few mem- 285

bership queries (cf. Sect. 6). Since the intermediate FDFA 286

F is not perfect, the CEX uvω from EQDBA(B[FB ]) can fall 287

into three categories, shown in Fig. 2: it can be (1) in the lan- 288

guage of the conjectured DBA B[FB ] (and thus of the FDFA 289

F), but not in the target language L, (2) in the target language 290

L, but not in the language of the FDFA F (and thus not in the 291

language of B[FB ]), and (3) in the target language L and the 292

language of the FDFA F , but not in the language of B[FB ]. 293

While the first two cases are standard (as they are in the 294

symmetric difference between UP(F) and UP(L)), the third 295

case poses an additional challenge in FDFA learning, as it is 296

not the FDFA itself, but only the DBA constructed from it, 297



F

B[FB ]
L(3) ♦
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Figure 2: The different cases of counterexamples.

that does not accept the witness word provided by the oracle.298

We develop a translation that interprets the states of the lead-299

ing and progress DFAs as their representative word from the300

rows of the observation table (cf. Fig. 4). The coverage of the301

third case is our key technical innovation.302

We will describe each component of the DBA learner sep-303

arately with more details in subsequent sections.304

4 From Limit/Sink FDFAs to DBAs305

We present our DBA construction component in this section.306

We will first recall the definitions of limit FDFAs as canonical307

FDFAs for ω-regular languages and then introduce the sink308

FDFAs we use to construct DBAs.309

By Definition 1, the Myhill-Nerode theorem associates310

each equivalence class of ∽R with a state of the minimal DFA311

D of the regular language R. The situation in ω-regular lan-312

guages is, however, more involved. An immediate extension313

of such RCs for an ω-regular language L is the following.314

Definition 4 (Leading RC). For two u1, u2 ∈ Σ∗, u1 ∽L u2315

if, and only if, ∀w ∈ Σω . u1w ∈ L ⇐⇒ u2w ∈ L holds.316

We then define the limit FDFAs for ω-regular languages.317

Definition 5 (Limit FDFAs [Li et al., 2023a]). The leading318

RC ∽ is as defined in Definition 4.319

Let [u]∽ be an equivalence class of ∽. For x, y ∈ Σ∗, we320

define limit RC as: x ≈u y if, and only if, ∀v ∈ Σ∗, (u·x·v ∽321

u =⇒ u·(x·v)ω ∈ L) ⇐⇒ (u·y ·v ∽ u =⇒ u·(y ·v)ω ∈ L).322

The limit FDFA FL = (M, {N u
L}) of L uses the leading323

DFA M = (T [∽], ∅) as defined in Definition 1; and, for324

each state [u]∽ ∈ Σ∗/∽, the progress DFA N u
L is the tuple325

(T [≈u
L], Fu), where [v]≈u

L
∈ Fu if u · v ∽ u =⇒ uvω ∈ L.326

Intuitively, a word v is accepted by N u
L if, when M makes327

a round trip from state [u]∽ over v, we must have uvω ∈ L.328

This means, in the case of DBAs, v is a word making the DBA329

of L visit some accepting transition from [u]∽-states; so, if330

the DBA closes a loop over v, then uvω must belong to L.331

The limit RC ≈u is then naturally defined over the language332

{v ∈ Σ∗ : u · v ∽ u ⇒ uvω ∈ L}, similarly to the RC ∽R333

defined over a regular language R as given in Sect. 2. Limit334

FDFAs are the class of canonical FDFAs that is useful for the335

definition of the sink FDFAs we use for learning DBAs.336

Definition 6 (Sink FDFAs [Li et al., 2023a]). The sink FDFA337

FB = (M, {N u
B}) of L is defined so that the leading DFA338

M is as in Definition 5, and the TS of each N u
B is, for each339

[u]∽ ∈ Σ∗/∽, exactly as that of N u
L from Definition 5.340

The set of final states Fu contains the equivalence classes341

[x]≈u
L

such that, for all v ∈ Σ∗, u·xv ∽ u =⇒ u·(xv)ω ∈ L.342

While the definition says ‘classes’, Fu either contains a sin-343

gle state, which is a final sink in N u
L (and N u

B), or is empty344

(ε, εε) (ε, aε)

bB[FB ]
a

a

b

Figure 3: The DBA constructed from FB in Fig. 4. The subscript ε
indicates the progress states belong to the progress DFA N ε

B .

(if N u
L does not have such a final sink) [Li et al., 2023a]. A 345

final state is said to be a sink if it has a self-loop over Σ. 346

DBA construction. Upon receiving an FDFA F from 347

EQFDFA(F), which may not be in canonical form, we first ob- 348

tain an FDFA F ′
B by allowing only final sinks as final states 349

and construct a DBA below. To make the DBA construction 350

more general, we assume an FDFA F ′
B = (M, {N q}q∈Q) 351

where M = (Q,Σ, ι, δ) and, for each q ∈ Q, we have 352

N q = (Qq,Σ, ιq, δq, Fq) where Fq only contains final sinks. 353

Definition 7 ([Bohn and Löding, 2022]). Let F ′
B = 354

(M, {N q}q∈Q) be the FDFA defined above. Let T [F ′
B ] be 355

the TS constructed from F ′
B defined as the tuple T [F ′

B ] = 356

(QT ,Σ, ιT , δT ) and Γ ⊆ {(q, σ) : q ∈ QT , σ ∈ Σ} be a set 357

of transitions where 358

• QT := Q×⋃
q∈Q Qq; 359

• ιT := (ι, ιι); 360

• For a state (m, q) ∈ QT and σ ∈ Σ, let q′ = δm̃(q, σ) 361

where N m̃ is the progress DFA that q belongs to and let 362

m′ = δ(m,σ). Then 363

δ((m, q), σ) =

{
(m′, q′) if q′ /∈ Fm̃

(m′, ιm′) if q′ ∈ Fm̃

• ((m, q), σ) ∈ Γ if q′ ∈ Fm̃ 364

An example DBA constructed from an FDFA is provided 365

in Fig. 3. The sink FDFA FB of L, as constructed in Defini- 366

tion 6, can be translated to its equivalent DBA. 367

Lemma 1 ([Li et al., 2023a]). If F ′
B is an FDFA with only 368

sink final states. Let B[F ′
B ] = (T [F ′

B ],Γ) as given in Defini- 369

tion 7. Then, UP(L(B[F ′
B ])) ⊆ UP(F ′

B). 370

Let FB be the sink FDFA of a DBA language L, as defined 371

in Definition 6. Let B[FB ] be the DBA constructed by Defini- 372

tion 7 from FB . Then UP(FB) = UP(L) = UP(L(B[FB ])). 373

Recall that we learn DBAs by learning the limit FDFA FL. 374

By Lemma 1, our DBA learner eventually learns the correct 375

DBA when the conjectured FDFA converges to FL in the 376

worst case. 377

5 The Limit FDFA Learner 378

With the canonical form of limit FDFAs (cf. Definition 5), we 379

can now describe the limit FDFA learner. In [Li et al., 2023b, 380

Appendix E], the authors gave a learning algorithm for limit 381

FDFAs. We follow their description of the limit FDFA learner 382

but allow a more relaxed form of counterexamples. For in- 383

stance, they require the CEX (u, v) to be normalised with re- 384

spect to the current leading DFA M, while our requirements 385
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Figure 4: The observation tables for the limit FDFA FL =
(M, {N ε

L}) and the sink FDFA FB = (M, {N ε
B}) of the DBA

language L = ({a, b}∗ · aa)ω . Double circles denote final states.

in Definition 8 does not ask for it. The importance of our def-386

inition of counterexamples is that it allows to learn the canon-387

ical form of limit FDFAs, while theirs only learns an abstract388

form, which cannot be used to construct DBAs.389

As usual, a learner uses an observation table [Angluin,390

1987] defined as a tuple T B = (S, S̃, E, T ), where S is a391

prefix-closed set of finite words, E is a set of experiments try-392

ing to distinguish the words in S, and T : S ×E → D stores393

the element (membership query results) in entry T (s, e) an394

element in some domain D, where s ∈ S and e ∈ E. For395

the limit FDFA, D is the set of Boolean values {⊤,⊥} for396

the leading DFA and a pair of Boolean values for progress397

DFAs (see Fig. 4). We determine when two words s1, s2 ∈ S398

are not equivalent depending on the RC we are using. The399

component S̃ ⊆ S is the subset considered as representa-400

tives of the equivalence classes, i.e. the state names of the401

constructed DFA. Take T Bε in Fig. 4 for example: S =402

{ε, a, aa, aaa, aab, ab, b} (all row names), S̃ = {ε, a, aa}403

(upper row names), and E = {ε, b} (all column names).404

A table is closed if S is prefix-closed and, for every s ∈ S̃405

and σ ∈ Σ, we have sσ ∈ S. The procedure CloseTable uses406

two sub-procedures ENT (read: entry) and DFR (read: differ-407

ence) to make a given table closed. Here ENT(s, e) is used408

to fill the table entry T (s, e) by means of asking membership409

queries. The procedure DFR is used to determine which rows410

(words) of the table should be distinguished.411

A learning procedure usually begins by creating an ini-412

tial observation table by asking membership queries, closing413

the table with ENT and DFR procedures, and then construct-414

ing a conjectured automaton for asking an equivalence query.415

The learner should be able to use the CEX to the equivalence416

query to find new experiments (columns) for discovering new417

equivalence classes.418

We let MQ(x, y) be the result of the membership query to419

the UP-word x ·yω to the oracle. The procedures ENT1, DFR1420

and Aut1 are used for learning the leading DFA. More pre-421

cisely, for u, x, y ∈ Σ∗, ENT1(u, (x, y)) = MQ(u · x, y); for422

two finite row words u1, u2 ∈ S, DFR1(u1, u2) = ⊤ iff there423

exists (x, y) ∈ E such that T (u1, (x, y)) ̸= T (u2, (x, y)).424

That is, we can use x · yω to distinguish the finite words u1425

and u2 according to ∽.426

The procedure Aut1 is simply to construct the leading427

DFA without final states from T B, by Definition 1. Note that,428

when a leading DFA is updated, this affects the RC ≈u
L, which 429

in turn affects some of the progress DFAs that then need to 430

be reconstructed. This is why in Algorithm 1 we reconstruct 431

progress DFAs N ũ for all ũ ∈ S̃ once M is updated. 432

Let Mu denote the DFA obtained from M by setting the 433

initial state to u. In the table, if u ∈ S̃, we have u = M(u) = 434

Mu(ε). When learning progress DFAs, for u, x, v ∈ Σ∗, 435

we define ENTu
2 (x, v) = (Mu(x · v) ?

= u,MQ(u, x · v)). We 436

can also regard ENTu
2 (x, v) (and thus Tu(x, v)) as ⊤ (Boolean 437

implication of the pairs) in testing equivalence if Mu(x·v) ̸= 438

u or MQ(u, x · v) = ⊤ holds, corresponding to whether ux · 439

v ∽ u =⇒ u · (xv)ω ∈ L holds in Definition 5; for two 440

finite row words, x1, x2 ∈ Su, DFRu
2 (x1, x2) returns ⊤ if 441

there exists v ∈ E such that Tu(x1, v) ̸= Tu(x2, v). An 442

example table T Bε is depicted in Fig. 4. 443

The procedure Autu(T Bu) not only constructs the TS 444

but also sets a state x as final if Tu(x, ε) = ⊤. Note that 445

here Tu(x, v) is regarded as the result of whether or not 446(
u = Mu(xv) =⇒ MQ(u, xv)

)
holds. 447

We have described above how to fill the observation tables 448

and construct DFAs. Now we show that, as long as the CEX 449

returned for the limit FDFA learner satisfies Definition 8, it 450

is good to refine the current conjecture F . By analysing the 451

CEX, we can add a new column e to the corresponding table 452

in order to distinguish two rows x · a and x′ that are cur- 453

rently classified as equivalent, where x, x′ ∈ S̃, x · a ∈ S and 454

DFR(x · a, x′) = ⊤ with DFR ∈ {DFRu
1 ,DFR2}. 455

In the remainder of the paper, we will regularly make
use of the duality of the states in the DFAs and the
words in the observation table they represent.

456

Definition 8. Let (u, v) be a CEX to the conjectured FDFA 457

F = (M, {N x}). We say (u, v) is good for refinement (GfR) 458

of F if it has the prefix or loop property described below. 459

Prefix. There exist two indices 0 ≤ i < j ≤ |u| such that 460

MQ(xi · u[i . . .], v) ̸= MQ(xj · u[j . . .], v), where xi = 461

M(u[0 · · · i]) and xj = M(u[0 · · · j]). 462

Loop. There exist two indices 0 ≤ i < j ≤ |v| such that 463

ũ = Mũ(yi · v[i . . .]) =⇒ MQ(ũ, yi · v[i . . .]) and 464

ũ = Mũ(yj · v[j . . .]) =⇒ MQ(ũ, yj · v[j . . .]) are 465

not equal, where ũ = M(u), yi = N ũ(v[0 · · · i]) and 466

yj = N ũ(v[0 · · · j]). 467

The refinement procedure of the conjectured FDFA F = 468

(M, {N x}) has been formalised as Alg. 1. First, we assume 469

that the CEX (u, v) is GfR. Let ũ = M(u). If (u, v) is a 470

prefix CEX, the leading DFA M will be refined. Otherwise, 471

if (u, v) is a loop CEX, the progress DFA N ũ will be refined. 472

Refinement of M. Since MQ(xi · u[i . . .], v) ̸= MQ(xj · 473

u[j . . .], v), we have xi · u[i . . .] ̸∽ xj · u[j . . .]. We can 474

find an experiment as follows. Let xk = M(u[0 · · · k]) be 475

the state or word representative that M arrives at after read- 476

ing the first k letters of u. In particular, xi = M(u[0 · · · i]) 477

and xj = M(u[0 · · · j]). We construct the sequence by ask- 478

ing membership queries: MQ(x0 · u[0 . . .], v), · · · ,MQ(xi · 479

u[i . . .], v), · · · ,MQ(xj · u[j . . .], v), · · · . Since MQ(xi · 480

u[i . . .], v) ̸= MQ(xj · u[j . . .], v) by prefix assumption, this 481

sequence has different results at the indices i and j. 482



Algorithm 1: Refinement of the conjecture FDFA F
Input: An FDFA F = (M, {N x}).
Let (u, v) be GfR for F and let ũ = M(u);
if (u, v) is a prefix CEX then

E = E ∪ FindDistinguishingExperiment(u, v);
CloseTable(T B,ENT1,DFR1) and let
M = Aut1(T B);

forall ũ ∈ S̃ do
CloseTable(T Bũ,ENTũ

2 ,DFR
ũ
2 ) and let

N ũ = Aut2(T Bũ);

else if (u, v) is a loop CEX then
Eũ = Eũ ∪ FindDistinguishingExperiment(ũ, v);
CloseTable(T Bũ,ENTũ

2 ,DFR
ũ
2 ) and let

N ũ = Aut2(T Bũ);

Therefore, there must exist the smallest k ∈ [i, j) such that483

MQ(xk ·u[k] ·u[k + 1 . . .], v) ̸= MQ(xk+1 ·u[k + 1 . . .], v),484

Hence, since xk+1 = Mxk
(u[k]), we can use the experiment485

e = (u[k + 1 . . .], v) to distinguish xk · u[k] and xk+1.486

Refinement of N ũ. Let yk = N ũ(v[0 · · · k]). Similarly,487

we have a sequence (m0, c0), · · · , (mi, ci), · · · , (mj , cj)488

where mk = ⊤ iff ũ = Mũ(yk · v[k . . .]) and ck = ⊤ iff489

ũ · (yk · v[k . . .])ω ∈ L (i.e. ck = MQ(ũ, yk · v[k . . .])).490

Since (u, v) is a loop CEX, only one of mi =⇒ ci and491

mj =⇒ cj holds. There must be a smallest integer k ∈ [i, j)492

such that mk =⇒ ck and mk+1 =⇒ ck+1 differ. Assume493

mk =⇒ ck holds (the other case is entirely similar). Thus,494

mk+1 =⇒ ck+1 does not hold. Analogously, we can add495

the experiment e = v[k + 1 . . .] to distinguish yk · v[k] and496

yk+1 since we have ũ = Mũ(yk · v[k . . .]) =⇒ ũ · (yk ·497

v[k . . .])ω ∈ L holds but ũ = Mũ(yk+1 · v[k + 1 . . .]) =⇒498

ũ · (yk+1 · v[k + 1 . . .])ω ∈ L does not hold.499

It immediately follows that the limit FDFA learner is guar-500

anteed to make progress once receiving a GfR CEX.501

Lemma 2. A CEX (u, v) satisfying Definition 8 refines the502

current leading DFA or a progress DFA in Algorithm 1.503

6 CEX Analysis Component504

Now we describe the CEX analysis component. By assump-505

tion, the input here is a UP-word w = uvω ∈ L(B[FB ])⊖L,506

represented by its decomposition (u, v) (cf. Fig. 1).507

Recall that we have the following three cases about w in508

Fig. 2: (1) w ∈ L(B[FB ]) \ L and w ∈ UP(F) since509

UP(L(B[FB ])) ⊆ UP(F), (2) w ∈ L \ L(B[FB ]) and510

w /∈ UP(F), and (3) w ∈ L \ L(B[FB ]) and w ∈ UP(F).511

We first analyse Case (1) and Case (2), which are already512

in the symmetric difference between UP(F) and UP(L). This513

means that the CEX is easy and we only need to extract a514

normalised decomposition (u′, v′) from w as below.515

(1) w ∈ L(B[FB ]) \ L and w ∈ UP(L(B[FB ])) ⊆ UP(F).516

Hence, w ∈ UP(F) but w /∈ L. There must be a nor-517

malised decomposition (u′, v′) of w such that (u′, v′)518

is accepted by F . However, w is not in L, so (u′, v′)519

should actually have been rejected. We can just return520

(u′, v′) as a CEX to further refine F . We now prove that 521

(u′, v′) satisfies Definition 8. 522

First, let x = M(u′). We ask MQ(x, v′)
?
= MQ(u′, v′). 523

If their results are not equal, we let i = 0 and j = |u′|. 524

We can then verify that (u′, v′) satisfies the prefix re- 525

quirement. Otherwise their membership results agree. 526

We let i = 0 and j = |v′|. Hence, yi = v′[0 · · · 0] = ε 527

and yj = N x(v′). Since (u′, v′) is accepted by F , we 528

have x = Mx(yj ·ε) =⇒ MQ(x, yj ·ε) since yj is a final 529

state in N x. However, x = M(u′) = Mx(yi · v′) be- 530

cause (u′, v′) is normalised. Together with MQ(x, v′) = 531

MQ(u′, v′) = ⊥, x = Mx(yi) =⇒ MQ(x, yi ·v′[0 . . . ]) 532

does not hold. Hence, (u′, v′) satisfies the loop require- 533

ment. Therefore, (u′, v′) is GfR. 534

(2) w ∈ L \ L(B[FB ]) and w /∈ UP(F). Consequently, 535

w /∈ UP(F) and w ∈ L. There must be a normalised 536

decomposition (u′, v′) of w such that (u′, v′) is not ac- 537

cepted by F . However, w is in L, so (u′, v′) should 538

have been accepted. Similarly, we can return (u′, v′) as 539

a CEX to refine F . Again, we can similarly prove that 540

(u′, v′) is GfR as Case (1) and we refer to Appendix A 541

for the details. 542

We only proved the existence of such counterexamples. We 543

refer to [Li et al., 2021] for details about how to extract them. 544

Note that the first two cases do not make any specific ref- 545

erence to the difference between UP(F) and L(B[FB ])— 546

they are a variation of vanilla FDFA learning. The third 547

case, however, is quite different: the CEX (u, v) is such that 548

w = uvω ∈ L \ L(B[FB ]) and w ∈ UP(F)—and not in the 549

symmetric difference of UP(F) and UP(L) (cf. Figure 2). 550

To tackle the CEX analysis in this case, the structure of the 551

DBA B[FB ] plays a crucial role. This seems unavoidable, 552

because we have w ∈ L and w ∈ UP(F), so that the quest 553

for a normalised decomposition (u′, v′) of w such that (u′, v′) 554

is not accepted by F , as we did in case (2), cannot work. This 555

makes case (3) significantly more involved. We will analyse 556

the CEX w by looking carefully at the run of B[FB ] over 557

w = uvω ∈ L \ L(B[FB ]). 558

Let ρ = (m0, ι0)(m1, ι1) · · · be the run of B[FB ] over w. 559

By assumption, w is not accepted by B[FB ]. So, the sequence 560

of progress DFA states in the run ρ will eventually get stuck 561

in a progress DFA according to Definition 7. Assume that ρ 562

eventually gets stuck in the progress DFA Nm, where m is a 563

state of the leading DFA, and thus also a word representative 564

of that equivalence class. Let ρ̂ be the projection on the first 565

element of each pair in ρ. We can see that ρ̂ is the run of the 566

leading DFA M over w. 567

Since B[FB ] has a finite number of states and w is a UP- 568

word, we can decompose w into three finite words x, v1 ∈ 569

Σ∗, v2 ∈ Σ+ such that w = x · v1 · (v2)ω,m = M(x),m′ = 570

M(xv1) = M(xv1 · v2), Nm(v1) = Nm(v1 · v2), where 571

m′ is a leading state that might be different to m. Let ṽ1 = 572

Nm(v1). Hence, ṽ1 = Nm(v1 · v2) holds as well. We can 573

depict the run ρ as follows: 574

ρ := (ι, ιι)
x−→ (m, ιm)

v1−→ (m′, ṽ1)
v2−→ (m′, ṽ1) (1)

Next, we find a word y ∈ Σ∗ from the observation table 575

for Nm such that m = Mm(ṽ1 · y) and m · (ṽ1 · y)ω /∈ L. To 576



see that such a word exists we assume for contradiction that577

there is no such word, and thus no entry (⊤,⊥) in the row of578

the observation table for ṽ1. But then ṽ1 is the sink final state,579

which contradicts that B[FB ] got stuck in Nm.580

With this word y, we can extract the CEX (u′, v′) by581

analysing the following three cases.582

(3a) m ̸= Mm(v1 · y). By Definition 5, this entails that y583

can be used to distinguish ṽ1 and v1 but currently ṽ1 and584

v1 are classified as equivalent since ṽ1 = Nm(v1). We585

can thus choose the loop CEX (u′, v′) = (x, v1 · y) to586

refine Nm. One can verify that (x, v1 · y) is a valid GfR587

loop CEX by setting the indices i = 0 and j = |v1| in588

Definition 8. Note that since m = M(x), so we use589

(u′, v′) to refine Nm.590

(3b) m = Mm(v1 · y) and m · (v1 · y)ω ∈ L (tested by591

MQ(m, v1 · y)). We can again choose the loop CEX592

(u′, v′) = (x, v1 · y) to refine Nm since ṽ1 and v1 can593

be distinguished with y. One can verify that (x, v1 · y)594

is a valid GfR loop CEX by again setting i = 0 and595

j = |v1| in Definition 8.596

(3c) The remaining case m = Mm(v1 ·y) and m ·(v1 ·y)ω /∈597

L (tested by MQ(m, v1 · y)) is quite involved, so we598

dedicate the remainder of this section to it. The analysis599

method is provided as Algorithm 2.600

Algorithm 2: Counterexample generation for
Case (3c): m = Mm(v1 · y) and m · (v1 · y)ω /∈ L

Input: m,x, v1, y ∈ Σ∗ and v2 ∈ Σ+

Output: A GfR counterexample
if MQ(m · v1, v2) = ⊥ then

return (x · v1, v2) as a prefix CEX;
k := 0;
while true do

h := 1;
while h ≤ k do

if MQ(m · (v1 · vk2 · y)h · v1, v2) = ⊥ then
return (x · (v1 · vk2 · y)h · v1, v2) as a prefix

CEX;
h := h+ 1;

if MQ(m, v1 · vk2 · y) = ⊤ then
return (x, v1 · vk2 · y) as a loop CEX;

k := k + 1;

First, if m·v1 ·v2ω /∈ L, then v1 ·v2ω (tested by MQ(m, v1 ·601

y)) distinguishes x from m, so that we can return the prefix602

CEX (x · v1, v2). One can verify (x · v1, v2) by setting i = 0603

and j = |x| in Definition 8.604

We also observe that the prefix CEX and loop CEX we re-605

turn in the loop/s are GfR counterexamples, as they establish606

that: (1) m ̸∼ x · (v1 · vk2 · y)h although m = M(x · (v1 ·607

vk2 · y)h) = Mm((v1 · vk2 · y)h) (because m′ = M(x · v1) =608

Mm(v1) = Mm(v1 · vk2 ) by decomposition of ρ); and (2)609

ṽ1 ̸≈m
L v1 · vk2 although ṽ1 = Nm(v1) = Nm(v1 · vk2 ). To610

prove (1), we first observe that Alg. 2 did not return before611

while loop, hence m ·v1 ·vω2 ∈ L. Moreover, by return condi- 612

tion of inner loop, we have that m · (v1 · vk2 · y)h · v1 · vω2 /∈ L. 613

It follows that m and m · (v1 ·vk2 ·y)h can be distinguished by 614

v1 ·vω2 . We refer to Appendix A for the proof why the returned 615

prefix CEX is GfR. To prove (2), we first have m·(v1·y)ω /∈ L 616

and m = Mm(v1 · y) by assumption. By return condition of 617

the outer loop, we have m · (v1 · vk2 · y)ω ∈ L. Therefore, it 618

follows that ṽ1 and v1 ·vk2 can be distinguished with y by Def- 619

inition 5. Again, to obtain a valid GfR loop CEX, we return 620

(x, v1 · vk2 · y) since m = M(x). One can verify the returned 621

CEX by setting i = 0 and j = |v1 · vk2 | in Definition 8. 622

Now we prove that Alg. 2 terminates. Let us assume that 623

our algorithm does not terminate. For this, we argue towards 624

contradiction that L is recognised by a DBA D with transition 625

function δ and d states. Once we have completed the outer 626

loop for k = d+1, we then know that, for all h ≤ k, we have 627

that m · (v1 · vk2 · y)h · v1 · v2ω ∈ L. (Otherwise the inner 628

loop will eventually return a prefix CEX, which leads to a 629

contradiction.) Let us denote xh = δ(ι,m · (v1 · vk2 · y)h · v1), 630

then the run of Dxh
on vk2 contains an accepting transition. 631

We now consider the run of D on m · (v1 · vk2 · y)ω . We 632

have established that it passes an accepting transition while 633

traversing each of the first k ‘v2k’ sequences. Moreover, it 634

cannot be on k different states (as there are only d = k − 1 635

different ones) after the first k iterations of the loop-part ‘v1 · 636

vk2 · y’, so that the run ends in an accepting loop. This entails 637

m ·(v1 ·vk2 ·y)ω ∈ L, and we would return a loop CEX, which 638

provides a contradiction and completes the proof. 639

Therefore, Lemma 3 follows immediately. 640

Lemma 3. Algorithm 2 terminates and returns a valid GfR 641

counterexample. 642

7 Concluding Remarks 643

By putting all three components together, we have completed 644

the design of our DBA learner. Theorem 1 follows directly 645

from Lemmas 1, 2 and 3 since in the worst case, the algorithm 646

terminates when the canonical limit FDFA has been learned. 647

Theorem 1. Our DBA learner depicted in Fig. 1 terminates 648

and learns a correct DBA of L. 649

We remark that all operations individually—and thus our 650

DBA learner as a whole—run in polynomial time with respect 651

to the sizes of the limit FDFA FL and the minimal DBA B of 652

the target language L. Moreover, as mentioned in Section 1, 653

we can easily obtain a DCA learner by learning the comple- 654

ment language of a target co-Büchi language. 655

The biggest advantage we reap with our DBA learner over 656

other learning algorithms for ω-automata is perhaps that we 657

not only obtain easy resolution of equivalence queries, but 658

also maintain reasonable expressiveness for the learned lan- 659

guages. Our contribution will further advance the frontier of 660

the applications of learning algorithms in various fields, in- 661

cluding verification, testing, and modelling, as well as further 662

applications mentioned in the introduction. 663
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[Büchi, 1962] J. Richard Büchi. On a decision method in695

restricted second order arithmetic. In Proc. Int. Congress696

on Logic, Method, and Philosophy of Science. 1960, pages697

1–12. Stanford University Press, 1962.698

[Calbrix et al., 1993] Hugues Calbrix, Maurice Nivat, and699

Andreas Podelski. Ultimately periodic words of ratio-700

nal ω-languages. In Stephen D. Brookes, Michael G.701

Main, Austin Melton, Michael W. Mislove, and David A.702

Schmidt, editors, MFPS, volume 802 of Lecture Notes in703

Computer Science, pages 554–566. Springer, 1993.704

[Cobleigh et al., 2003] Jamieson M. Cobleigh, Dimitra Gi-705

annakopoulou, and Corina S. Pasareanu. Learning as-706

sumptions for compositional verification. In Hubert Gar-707

avel and John Hatcliff, editors, TACAS, volume 2619708

of Lecture Notes in Computer Science, pages 331–346.709

Springer, 2003.710

[de Ruiter and Poll, 2015] Joeri de Ruiter and Erik Poll. Pro-711

tocol state fuzzing of TLS implementations. In Jaeyeon712

Jung and Thorsten Holz, editors, USENIX, pages 193–206.713

USENIX Association, 2015.714

[Farzan et al., 2008] Azadeh Farzan, Yu-Fang Chen, Ed-715

mund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.716

Extending automated compositional verification to the full717

class of omega-regular languages. In C. R. Ramakrishnan718

and Jakob Rehof, editors, TACAS, volume 4963 of Lecture719

Notes in Computer Science, pages 2–17. Springer, 2008.720

[Isberner et al., 2014] Malte Isberner, Falk Howar, and Bern- 721

hard Steffen. The TTT algorithm: A redundancy-free ap- 722

proach to active automata learning. In Borzoo Bonakdar- 723

pour and Scott A. Smolka, editors, Runtime Verification 724

- 5th International Conference, RV 2014, Toronto, ON, 725

Canada, September 22-25, 2014. Proceedings, volume 726

8734 of Lecture Notes in Computer Science, pages 307– 727

322. Springer, 2014. 728

[Li et al., 2021] Yong Li, Yu-Fang Chen, Lijun Zhang, and 729

Depeng Liu. A novel learning algorithm for Büchi au- 730
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A Proof for GfR CEX765

A.1 Case (2)766

Recall that w ∈ L \ L(B[FB ]) and w /∈ UP(F). We return767

a normalised decomposition (u′, v′) of w as a CEX to refine768

F . Now we show that (u′, v′) is GfR based on the fact that769

(u′, v′) is not accepted by F but u′ · v′ω ∈ L.770

Let x = M(u′). We ask MQ(x, v′)
?
= MQ(u′, v′). If the771

membership results are not equivalent, we can analogously772

prove that (u′, v′) satisfies the prefix requirement as in Case773

(1). Assume that their membership results agree. We then774

let i = 0 and j = |v′|. Hence, yi = v′[0 · · · 0] = ε and775

yj = N x(v′). Since (u′, v′) is normalised and not accepted776

by F , we have that x = M(u′) = M(u′ · yi). Together777

with MQ(x, v′) = MQ(u′, v′) = ⊤, x = M(x · yi) =⇒778

MQ(x, yi · v′[1 · · · ]) indeed holds, while x = Mx(yj) =⇒779

MQ(x, yj ·ε) must not hold due to the fact that yj is not a final780

state in N x. Therefore, (u′, v′) satisfies the loop requirement781

and (u′, v′) is GfR.782

A.2 Cases (3a) and (3b)783

We first provide the proof for case (3a). Recall that m ̸=784

Mm(v1 · y), ṽ1 = Nm(v1), m = Mm(ṽ1 · y) and m · (ṽ1 ·785

y)ω /∈ L. Recall that m = M(x).786

The returned CEX is (u′, v′) = (x, v1 · y). We now prove787

that it is a loop GfR CEX. We set the indices i = 0 and j =788

|v1| in Definition 8. It follows that yi = Nm(v1[0 . . . i]) =789

Nm(ε) = ε and yj = Nm(v1[0 . . . ]j) = ṽ1. Hence, we have790

m = Mm(yi ·v1 ·y) =⇒ m·(yi ·v1 ·y)ω ∈ L hold since m ̸=791

Mm(v1 ·y) by assumption of Case (3a) and yi = ε. However,792

m = Mm(yj · v1[j . . . ] · y) =⇒ m · (yj · v1[j . . . ] · y)ω ∈ L793

does not hold since v1[0 . . . j] = yj (and thus v1[j . . . ] = ε)794

and yj = ṽ1. Therefore, (x, v1 · y) is a valid loop GfR CEX795

according to Definition 8.796

For the proof of Case (3b), the proof is entirely similar and797

thus omitted here.798

A.3 Case (3c)799

We also observe that the prefix CEX and loop CEX we return800

in the loop/s are GfR counterexamples, as they establish that:801

(1) m ̸∼ x · (v1 · vk2 · y)h although m = M(x · (v1 · vk2 ·802

y)h) = Mm((v1 · vk2 · y)h) (because m′ = M(x · v1) =803

Mm(v1) = Mm(v1 · vk2 ) by decomposition of ρ); and (2)804

ṽ1 ̸≈m
L v1 · vk2 although ṽ1 = Nm(v1) = Nm(v1 · vk2 ). To805

prove (1), we first observe that Algorithm 2 did not return806

before while loop, hence m · v1 · vω2 ∈ L. Moreover, by807

return condition of inner loop, we have that m · (v1 · vk2 ·808

y)h · v1 · vω2 /∈ L. It follows that m and m · (v1 · vk2 · y)h809

can be distinguished by v1 · vω2 . To obtain a valid GfR prefix810

counterexample, we return (x · (v1 · vk2 · y)h · v1, v2), so one811

can verify it by setting i = |x| and j = |x · (v1 · vk2 · y)h| in812

Definition 8. Hence by applying Definition 8, we have that813

xi = M(x) = m = xj = M(x · (v1 · vk2 · y)h)). It follows814

that MQ(xi · (v1 · vk2 · y)h · v1, v2) = MQ(m · (v1 · vk2 · y)h ·815

v1, v2) = ⊥ while MQ(xj · v1, v2) = MQ(m · v1, v2) = ⊤.816

This concludes that (x · (v1 · vk2 · y)h · v1, v2) is a valid GfR817

prefix counterexample. To prove (2), we first have m · (v1 ·818

y)ω /∈ L and m = Mm(v1 · y) by assumption. By return819

condition of the outer loop, we have m · (v1 · vω2 · y)ω ∈ L. 820

Therefore, it follows that ṽ1 and v1 · vk2 can be distinguished 821

with y by Definition 5. Again, to obtain a valid GfR loop 822

CEX, we return (x, v1 · vk2 · y) since m = M(x). One can 823

verify the returned CEX by setting i = 0 and j = |v1 · vk2 | 824

in Definition 8. By Definition 8, we have that yi = ε and 825

yj = Nm((v1 · vk2 · y)[0 · · · j] = Nm(v1 · vk2 ) = ṽ1. For yi, 826

we have m = Mm(yi ·v1 ·vk2 ·y) =⇒ m · (yi ·v1 ·vk2 ·y) ∈ L 827

since m · (v1 · vk2 · y)ω ∈ L by return condition. For yj , m = 828

Mm(yj ·(v1 ·vk2 ·y)[j . . . ]) =⇒ m·(yj ·(v1 ·vk2 ·y)[j . . . ]) ∈ L 829

(equivalently m = Mm(ṽ1 ·y) =⇒ m·(ṽ1 ·y) ∈ L ) does not 830

hold since (v1 · vk2 · y)[j . . . ] = y and yj = ṽ1. Therefore, the 831

CEX (x, v1 ·vk2 ·y) satisfies the loop requirement of Definition 832

8 and thus a valid loop GfR CEX. 833
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