
A novel family of finite automata for recognizing1

and learning ω-regular languages2

Yong Li , Sven Schewe , Qiyi Tang3

University of Liverpool, UK4

Abstract. Families of DFAs (FDFAs) have recently been introduced5

as a new representation of ω-regular languages. They target ultimately6

periodic words, with acceptors revolving around accepting some repre-7

sentation u · vω. Three canonical FDFAs have been suggested, called8

periodic, syntactic, and recurrent. We propose a fourth one, limit FD-9

FAs, which can be exponentially coarser than periodic FDFAs and are10

more succinct than syntactic FDFAs, while they are incomparable (and11

dual to) recurrent FDFAs. We show that limit FDFAs can be easily used12

to check not only whether ω-languages are regular, but also whether13

they are accepted by deterministic Büchi automata. We also show that14

canonical forms can be left behind in applications: the limit and recur-15

rent FDFAs can complement each other nicely, and it may be a good way16

forward to use a combination of both. Using this observation as a start-17

ing point, we explore making more efficient use of Myhill-Nerode’s right18

congruences in aggressively increasing the number of don’t-care cases in19

order to obtain smaller progress automata. In pursuit of this goal, we20

gain succinctness, but pay a high price by losing constructiveness.21

1 Introduction22

The class of ω-regular languages has proven to be an important formalism to23

model reactive systems and their specifications, and automata over infinite words24

are the main tool to reason about them. For example, the automata-theoretic25

approach to verification [25] is the main framework for verifying ω-regular spec-26

ifications. The first type of automata recognizing ω-regular languages is non-27

deterministic Büchi automata [6] (NBAs) where an infinite word is accepted if28

one of its runs meets the accepting condition for infinitely many times. Since29

then, other types of acceptance conditions, such as Muller, Rabin, Streett and30

parity automata [26], have been introduced. All the automata mentioned above31

are finite automata processing infinite words, widely known as ω-automata [26].32

The theory of ω-regular languages is more involved than that of regular33

languages. For instance, nondeterministic finite automata (NFAs) can be de-34

terminized with a subset construction, while NBAs have to make use of tree35

structures [22]. This is because of a fundamental difference between these lan-36

guage classes: for a given regular language R, the Myhill-Nerode theorem [19,20]37

defines a right congruence (RC) ∽R in which every equivalence class corresponds38

to a state in the minimal deterministic finite automata (DFA) accepting R. In39

http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0002-9265-3011

2 Yong Li, Sven Schewe, Qiyi Tang

contrast, there is no similar theorem to define the minimal deterministic ω-40

automata for the full class of ω-regular languages1. Schewe proved in [24] that41

it is NP-complete to find the minimal deterministic ω-automaton even given42

a deterministic ω-automaton. Therefore, it seems impossible to easily define a43

Myhill-Nerode theorem for (minimal) ω-automata.44

Recently, Angluin, Boker and Fisman [2] proposed families of DFAs (FDFAs)45

for recognizing ω-regular languages, in which every DFA can be defined with46

respect to a RC defined over a given ω-regular language [3]. This tight connection47

is the theoretical foundation on which the state of the art learning algorithms48

for ω-regular languages [3,13] using membership and equivalence queries [1] are49

built. FDFAs are based on well-known properties of ω-regular languages [6, 7]:50

two ω-regular languages are equivalent if, and only if, they have the same set51

of ultimately periodic words. An ultimately periodic word w is an infinite word52

that consists of first a finite prefix u, followed by an infinite repetition of a finite53

nonempty word v; it can thus be represented as a decomposition pair (u, v).54

FDFAs accept infinite words by accepting their decomposition pairs: an FDFA55

F = (M, {N q}) consists of a leading DFA M that processes the finite prefix u,56

while leaving the acceptance work of v to the progress DFA N q, one for each57

state of M. To this end, M intuitively tracks the Myhill-Nerode’s RCs, and58

an ultimately periodic word u · vω is accepted if it has a representation x · yω59

such that x and x · y are in the same congruence class and y is accepted by the60

progress DFA N x. Angluin and Fisman [3] formalized the RCs of three canonical61

FDFAs, namely periodic [7], syntactic [17] and recurrent [3], and provided a62

unified learning framework for them.63

In this work, we first propose a fourth one, called limit FDFAs (cf. Section 3).64

We show that limit FDFAs are coarser than syntactic FDFAs. Since syntactic65

FDFAs can be exponentially more succinct than periodic FDFAs [3], so do our66

limit FDFAs. We show that limit FDFAs are dual (and thus incomparable in67

the size) to recurrent FDFAs, due to symmetric treatment for don’t care words.68

More precisely, the formalization of such FDFA does not care whether or not69

a progress automaton N x accepts or rejects a word v, unless reading it in M70

produces a self-loop. Recurrent progress DFAs reject all those don’t care words,71

while limit progress DFAs accept them.72

We show that limit FDFAs (families of DFAs that use limit DFAs) have two73

interesting properties. The first is on conciseness: we show that this change in74

the treatment of don’t care words not only defines a dual to recurrent FDFAs but75

also allows us to identify languages accepted by deterministic Büchi automata76

(DBAs) easily. It is only known that one can identify whether a given ω-language77

is regular by verifying whether the number of states in the three canonical FDFAs78

is finite. However, if one wishes to identify DBA-recognizable languages with79

FDFAs, a straight-forward approach is to first translate the input FDFA to an80

equivalent deterministic Rabin automaton [2] through an intermediate NBA,81

and then use the deciding algorithm in [11] by checking the transition structure82

1 Simple extension of Myhill-Nerode theorem for ω-regular languages only works on a
small subset [4, 16]

Novel Families of Finite Automata 3

of Rabin automata. However, this approach is exponential in the size of the83

input FDFA because of the NBA determinization procedure [8,22,23]. Our limit84

FDFAs are, to the best of our knowledge, the first type of FDFAs able to identify85

the DBA-recognizable languages in polynomial time (cf. Section 4).86

We note that limit FDFAs also fit nicely into the learning framework intro-87

duced in [3], so that they can be used for learning without extra development.88

We then discuss how to make more use of don’t care words when defining89

the RCs of the progress automata, leading to the coarsest congruence relations90

and therefore the most concise FDFAs, albeit to the expense of losing construc-91

tiveness (cf. Section 5).92

2 Preliminaries93

In the whole paper, we fix a finite alphabet Σ. A word is a finite or infinite94

sequence of letters in Σ; ϵ denotes the empty word. Let Σ∗ and Σω denote95

the set of all finite and infinite words (or ω-words), respectively. In particular,96

we let Σ+ = Σ∗ \ {ϵ}. A finitary language is a subset of Σ∗; an ω-language97

is a subset of Σω. Let ρ be a sequence; we denote by ρ[i] the i-th element of98

ρ and by ρ[i..k] the subsequence of ρ starting at the i-th element and ending99

at the k-th element (inclusively) when i ≤ k, and the empty sequence ϵ when100

i > k. Given a finite word u and a word w, we denote by u · w (uw, for short)101

the concatenation of u and w. Given a finitary language L1 and a finitary/ω-102

language L2, the concatenation L1 ·L2 (L1L2, for short) of L1 and L2 is the set103

L1 · L2 = {uw | u ∈ L1, w ∈ L2 } and Lω
1 the infinite concatenation of L1.104

Transition system. A (nondeterministic) transition system (TS) is a tu-105

ple T = (Q, q0, δ), where Q is a finite set of states, q0 ∈ Q is the initial106

state, and δ : Q × Σ → 2Q is a transition function. We also lift δ to sets as107

δ(S, σ) :=
⋃

q∈S δ(q, σ). We also extend δ to words, by letting δ(S, ϵ) = S and108

δ(S, a0a1 · · · ak) = δ(δ(S, a0), a1, · · · , ak), where we have k ≥ 1 and ai ∈ Σ for109

i ∈ {0, · · · , k}.110

The underlying graph GT of a TS T is a graph ⟨Q,E⟩, where the set of111

vertices is the set Q of states in T and (q, q′) ∈ E if q′ ∈ δ(q, a) for some a ∈ Σ.112

We call a set C ⊆ Q a strongly connected component (SCC) of T if, for every113

pair of states q, q′ ∈ C, q and q′ can reach each other in GT .114

Automata. An automaton on finite words is called a nondeterministic finite115

automaton (NFA). An NFA A is formally defined as a tuple (T , F), where T is116

a TS and F ⊆ Q is a set of final states. An automaton on ω-words is called a117

nondeterministic Büchi automaton (NBA). An NBA B is represented as a tuple118

(T , Γ) where T is a TS and Γ ⊆ {(q, a, q′) : q, q′ ∈ Q, a ∈ Σ, q′ ∈ δ(q, a)} is a set119

of accepting transitions. An NFA A is said to be a deterministic finite automaton120

(DFA) if, for each q ∈ Q and a ∈ Σ, |δ(q, a)| ≤ 1. Deterministic Büchi automata121

(DBAs) are defined similarly and thus Γ is a subset of {(q, a) : q ∈ Q, a ∈ Σ},122

since the successor q′ is determined by the source state and the input letter.123

4 Yong Li, Sven Schewe, Qiyi Tang

A run of an NFA A on a finite word u of length n ≥ 0 is a sequence of124

states ρ = q0q1 · · · qn ∈ Q+ such that, for every 0 ≤ i < n, qi+1 ∈ δ(qi, u[i]).125

We write q0
u−→qn if there is a run from q0 to qn over u. A finite word u ∈ Σ∗

126

is accepted by an NFA A if there is a run q0 · · · qn over u such that qn ∈ F .127

Similarly, an ω-run of A on an ω-word w is an infinite sequence of transitions128

ρ = (q0, w[0], q1)(q1, w[1], q2) · · · such that, for every i ≥ 0, qi+1 ∈ δ(qi, w[i]).129

Let inf(ρ) be the set of transitions that occur infinitely often in the run ρ. An130

ω-word w ∈ Σω is accepted by an NBA A if there exists an ω-run ρ of A over131

w such that inf(ρ) ∩ Γ ̸= ∅. The finitary language recognized by an NFA A,132

denoted by L∗(A), is defined as the set of finite words accepted by it. Similarly,133

we denote by L(A) the ω-language recognized by an NBA A, i.e., the set of ω-134

words accepted by A. NFAs/DFAs accept exactly regular languages while NBAs135

recognize exactly ω-regular languages.136

Right congruences. A right congruence (RC) relation is an equivalence rela-137

tion ∽ over Σ∗ such that x ∽ y implies xv ∽ yv for all v ∈ Σ∗. We denote by138

| ∽ | the index of ∽, i.e., the number of equivalence classes of ∽. A finite RC is139

a RC with a finite index. We denote by Σ∗/∽ the set of equivalence classes of140

Σ∗ under ∽. Given x ∈ Σ∗, we denote by [x]∽ the equivalence class of ∽ that x141

belongs to.142

For a given RC ∽ of a regular language R, the Myhill-Nerode theorem [19,20]143

defines a unique minimal DFA D of R, in which each state of D corresponds to144

an equivalence class defined by ∽ over Σ∗. Therefore, we can construct a DFA145

D[∽] from ∽ in a standard way.146

Definition 1 ([19, 20]). Let ∽ be a right congruence of finite index. The TS147

T [∽] induced by ∽ is a tuple (S, s0, δ) where S = Σ∗/∽, s0 = [ϵ]∽, and for each148

u ∈ Σ∗ and a ∈ Σ, δ([u]∽, a) = [ua]∽.149

For a given regular language R, we can define the RC ∽R of R as x ∽R150

y if, and only if, ∀v ∈ Σ∗. xv ∈ R ⇐⇒ yv ∈ R. Therefore, the minimal DFA151

for R is the DFA D[∽R] = (T [∽R], F∽R
) by setting final states F∽R

to all152

equivalence classes [u]∽R
such that u ∈ R.153

Ultimately periodic (UP) words. A UP-word w is an ω-word of the form154

uvω, where u ∈ Σ∗ and v ∈ Σ+. Thus w = uvω can be represented as a pair of155

finite words (u, v), called a decomposition of w. A UP-word can have multiple156

decompositions: for instance (u, v), (uv, v), and (u, vv) are all decompositions of157

uvω. For an ω-language L, let UP(L) = {uvω ∈ L | u ∈ Σ∗ ∧ v ∈ Σ+ } denote158

the set of all UP-words in L. The set of UP-words of an ω-regular language L159

can be seen as the fingerprint of L, as stated below.160

Theorem 1 ([6, 7]). (1) Every non-empty ω-regular language L contains at161

least one UP-word. (2) Let L and L′ be two ω-regular languages. Then L = L′
162

if, and only if, UP(L) = UP(L′).163

Novel Families of Finite Automata 5

Families of DFAs (FDFAs). Based on Theorem 1, Angluin, Boker, and Fis-164

man [2] introduced the notion of FDFAs to recognize ω-regular languages.165

Definition 2 ([2]). An FDFA is a pair F = (M, {N q}) consisting of a leading166

DFA M and of a progress DFA N q for each state q in M.167

Intuitively, the leading DFA M of F = (M, {N q}) for L consumes the finite168

prefix u of a UP-word uvω ∈ UP(L), reaching some state q and, for each state q169

of M, the progress DFA N q accepts the period v of uvω. Note that the leading170

DFA M of every FDFA does not make use of final states—contrary to its name,171

it is really a leading transition system.172

Let A be a deterministic automaton with TS T = (Q, q0, δ) and x ∈ Σ∗. We173

denote by A(x) the state δ(q0, x). Each FDFA F characterizes a set of UP-words174

UP(F) by following the acceptance condition.175

Definition 3 (Acceptance). Let F = (M, {N q}) be an FDFA and w be a UP-176

word. A decomposition (u, v) of w is normalized with respect to F if M(u) =177

M(uv). A decomposition (u, v) is accepted by F if (u, v) is normalized and we178

have v ∈ L∗(N q) where q = M(u). The UP-word w is accepted by F if there179

exists a decomposition (u, v) of w accepted by F .180

Note that the acceptance condition in [2] is defined with respect to the de-181

compositions, while ours applies to UP-words. So, they require the FDFAs to be182

saturated for recognizing ω-regular languages.183

Definition 4 (Saturation [2]). Let F be an FDFA and w be a UP-word in184

UP(F). We say F is saturated if, for all normalized decompositions (u, v) and185

(u′, v′) of w, either both (u, v) and (u′, v′) are accepted by F , or both are not.186

We will see in Section 4.1 that under our acceptance definition the saturation187

property can be relaxed while still accepting the same language.188

In the remainder of the paper, we fix an ω-language L unless stated otherwise.189

3 Limit FDFAs for recognizing ω-regular languages190

In this section, we will first recall the definitions of three existing canonical FD-191

FAs for ω-regular languages, and then introduce our limit FDFAs and compare192

the four types of FDFAs.193

3.1 Limit FDFAs and other canonical FDFAs194

Recall that, for a given regular language R, by Definition 1, the Myhill-Nerode195

theorem [19, 20] associates each equivalence class of ∽R with a state of the196

minimal DFA D[∽R] of R. The situation in ω-regular languages is, however, more197

involved [4]. An immediate extension of such RCs for an ω-regular language L198

is the following.199

Definition 5 (Leading RC). For two u1, u2 ∈ Σ∗, u1 ∽L u2 if, and only if200

∀w ∈ Σω. u1w ∈ L ⇐⇒ u2w ∈ L.201

6 Yong Li, Sven Schewe, Qiyi Tang

Since we fix an ω-language L in the whole paper, we will omit the subscript202

in ∽L and directly use ∽ in the remainder of the paper.203

Assume that L is an ω-regular language. Obviously, the index of ∽ is finite204

since it is not larger than the number of states in the minimal deterministic205

ω-automaton accepting L. However, ∽ is only enough to define the minimal ω-206

automaton for a small subset of ω-regular languages; see [4,16] for details about207

such classes of languages. For instance, consider the language L = (Σ∗ · aa)ω208

over Σ = {a, b}: clearly, | ∽ | = 1 because L is a suffix language (for all u ∈ Σ∗,209

w ∈ L ⇐⇒ u · w ∈ L). At the same time, it is easy to see that the minimal210

deterministic ω-automaton needs at least two states to recognize L. Hence, ∽211

alone does not suffice to recognize the full class of ω-regular languages.212

Nonetheless, based on Theorem 1, we only need to consider the UP-words213

when uniquely identifying a given ω-regular language L with RCs. Calbrix et214

al. proposed in [7] the use of the regular language L$ = {u$v : u ∈ Σ∗, v ∈215

Σ+, uvω ∈ L} to represent L, where $ /∈ Σ is a fresh letter2. Intuitively, L$216

associates a UP-word w in UP(L) by containing every decomposition (u, v) of w217

in the form of u$v. The FDFA representing L$ is formally stated as below.218

Definition 6 (Periodic FDFAs [7]). The ∽ is as defined in Definition 5.219

Let [u]∽ be an equivalence class of ∽. For x, y ∈ Σ∗, we define periodic RC220

as: x ≈u
P y if, and only if, ∀v ∈ Σ∗, u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L.221

The periodic FDFA FP = (M, {N u
P }) of L is defined as follows.222

The leading DFA M is the tuple (T [∽], ∅). Recall that T [∽] is the TS con-223

structed from ∽ by Definition 1.224

The periodic progress DFA N u
P of the state [u]∽ ∈ Σ∗/∽ is the tuple (T [≈u

P225

], Fu), where [v]≈u
P
∈ Fu if uvω ∈ L.226

One can verify that, for all u, x, y, v ∈ Σ∗, if x ≈u
P y, then xv ≈u

P yv. Hence,227

≈u
P is a RC. It is also proved in [7] that L$ is a regular language, so the index228

of ≈u
P is also finite.229

Angluin and Fisman in [3] showed that, for a variant of the family of lan-230

guages Ln given by Michel [18], its periodic FDFA has Ω(n!) states, while the231

syntactic FDFA obtained in [17] only has O(n2) states. The leading DFA of the232

syntactic FDFAs is exactly the one defined for the periodic FDFA. The two types233

of FDFAs differ in the definitions of the progress DFAs N u for some [u]∽. From234

Definition 6, one can see that N u
P accepts the finite words in Vu = {v ∈ Σ+ :235

u · vω ∈ L}. The progress DFA N u
S of the syntactic FDFA is not required to236

accept all words in Vu, but only a subset Vu,v = {v ∈ Σ+ : u · vω ∈ L, u ∽ u · v},237

over which the leading DFA M can take a round trip from M(u) back to it-238

self. This minor change makes the syntactic FDFAs of the language family Ln239

exponentially more succinct than their periodic counterparts.240

Formally, syntactic FDFAs are defined as follows.241

Definition 7 (Syntactic FDFA [17]). The ∽ is as defined in Definition 5.242

2 This enables to learn L via learning the regular language L$ [10].

Novel Families of Finite Automata 7

Let [u]∽ be an equivalence class of ∽. For x, y ∈ Σ∗, we define syntactic RC243

as: x ≈u
S y if and only if u · x ∽ u · y and for ∀v ∈ Σ∗, if u · x · v ∽ u, then244

u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L.245

The syntactic FDFA FS = (M, {N u
S }) of L is defined as follows.246

The leading DFA M is the tuple (T [∽], ∅) as defined in Definition 6.247

The syntactic progress DFA N u
S of the state [u]∽ ∈ Σ∗/∽ is the tuple (T [≈u

S248

], Fu) where [v]≈u
S
∈ Fu if u · v ∽ u and uvω ∈ L.249

Angluin and Fisman [3] noticed that the syntactic progress RCs are not250

defined with respect to the regular language Vu,v = {v ∈ Σ+ : u·vω ∈ L, u ∽ u·v}251

as ∽Vu,v that is similar to ∽R for a regular language R. They proposed the252

recurrent progress RC ≈u
R that mimics the RC ∽Vu,v

to obtain a DFA accepting253

Vu,v as follows.254

Definition 8 (Recurrent FDFAs [3]). The ∽ is as defined in Definition 5.255

Let [u]∽ be an equivalence class of ∽. For x, y ∈ Σ∗, we define recurrent RC256

as: x ≈u
R y if and only if ∀v ∈ Σ∗, (u · x · v ∽ u ∧ u · (xv)ω ∈ L) ⇐⇒ (u · yv ∽257

u ∧ u · (y · v)ω ∈ L).258

The recurrent FDFA FR = (M, {N u
R}) of L is defined as follows.259

The leading DFA M is the tuple (T [∽], ∅) as defined in Definition 6.260

The recurrent progress DFA N u
R of the state [u]∽ ∈ Σ∗/∽ is the tuple (T [≈u

R261

], Fu) where [v]≈u
R
∈ Fu if u · v ∽ u and uvω ∈ L.262

As pointed out in [3], the recurrent FDFAs may not be minimal because, ac-263

cording to Definition 3, FDFAs only care about the normalized decompositions,264

i.e, whether a word in Cu = {v ∈ Σ+ : u · v ∽ u} is accepted by the progress265

DFA N u
R. However, there are don’t care words that are not in Cu and recurrent266

FDFAs treat them all as rejecting3.267

Our argument is that the don’t care words are not necessarily rejecting and268

can also be regarded as accepting. This idea allows the progress DFAs N u to269

accept the regular language {v ∈ Σ+ : u · v ∽ u =⇒ u · vω ∈ L}, rather270

than {v ∈ Σ+ : u · v ∽ u ∧ u · vω ∈ L}. This change allows a translation of271

limit FDFAs to DBAs with a quadratic blow-up when L is DBA-recognizable272

language, as shown later in Section 4. We formalize this idea as below and define273

a new type of FDFAs called limit FDFAs.274

Definition 9 (Limit FDFAs). The ∽ is as defined in Definition 5.275

Let [u]∽ be an equivalence class of ∽. For x, y ∈ Σ∗, we define limit RC as:276

x ≈u
L y if and only if ∀v ∈ Σ∗, (u · x · v ∽ u =⇒ u · (x · v)ω ∈ L) ⇐⇒ (u · y · v ∽277

u =⇒ u · (y · v)ω ∈ L).278

The limit FDFA FL = (M, {N u
L}) of L is defined as follows.279

The leading DFA M is the tuple (T [∽], ∅) as defined in Definition 6.280

The progress DFA N u
L of the state [u]∽ ∈ Σ∗/∽ is the tuple (T [≈u

L], Fu)281

where [v]≈u
L
∈ Fu if u · v ∽ u =⇒ uvω ∈ L.282

3 Minimizing DFAs with don’t care words is NP-complete [21]

8 Yong Li, Sven Schewe, Qiyi Tang

We need to show that ≈u
L is a RC. For u, x, y, v′ ∈ Σ∗, if x ≈u

L y, we need to283

prove that xv′ ≈u
L yv′, i.e., for all e ∈ Σ∗, (u · xv′ · e ∽ u =⇒ u · (xv′ · e)ω ∈284

L) ⇐⇒ (u · yv′ · e ∽ u =⇒ u · (yv′ · e)ω ∈ L). This follows immediately from285

the fact that x ≈u
L y by setting v = v′ · e for all e ∈ Σ∗ in Definition 9.286

Let L = aω + abω be a language over Σ = {a, b}. Three types of FDFAs287

are depicted in Figure 1, where the leading DFA M is given in the column288

labeled with ”Leading” and the progress DFAs are in the column labeled with289

“Syntactic”, “Recurrent” and “Limit”. We omit the periodic FDFA here since we290

will focus more on the other three in this work. Consider the progress DFA N aa
L :291

there are only two equivalence classes, namely [ϵ]≈aa
L

and [a]≈aa
L
. We can use v = ϵ292

to distinguish ϵ and a word x ∈ Σ+ since aa · ϵ ∽ aa =⇒ aa · (ϵ · ϵ)ω ∈ L does293

not hold, while aa ·x ∽ aa =⇒ aa · (x ·ϵ)ω ∈ L holds. For all x, y ∈ Σ+, x ≈aa
L y294

since both aa ·x ∽ aa =⇒ aa · (x · v)ω ∈ L and aa · y ∽ aa =⇒ aa · (y · v)ω ∈ L295

hold for all v ∈ Σ∗. One can also verify the constructions for the syntactic and296

recurrent progress DFAs. We can see that the don’t care word b for the class297

[aa]∽ are rejecting in both N aa
S and N aa

R , while it is accepted by N aa
L . Even298

though b is accepted in N aa
L , one can observe that (aa, b) (and thus aa · bω) is299

not accepted by the limit FDFA, according to Definition 3. Indeed, the three300

types of FDFAs still recognize the same language L.301

When the index of ∽ is only one, then ϵ ∽ u holds for all u ∈ Σ∗. Corollary 1302

follows immediately.303

Corollary 1. Let L be an ω-regular language with | ∽ | = 1. Then, periodic,304

syntactic, recurrent and limit FDFAs coincide.305

We show in Lemma 1 that the limit FDFAs are a coarser representation of306

L than the syntactic FDFAs. Moreover, there is a tight connection between the307

syntactic FDFAs and limit FDFAs.308

Lemma 1. For all u, x, y ∈ Σ∗,309

1. x ≈u
S y if, and only if u · x ∽ u · y and x ≈u

L y.310

2. | ≈u
L | ≤ | ≈u

S | ≤ | ∽ | · | ≈u
L |; | ≈u

L | ≤ | ∽ | · | ≈u
P |.311

Proof. 1. – Assume that ux ∽ uy and x ≈u
L y. Since x ≈u

L y holds, then for all312

v ∈ Σ∗, (uxv ∽ u =⇒ u · (xv)ω ∈ L) ⇐⇒ (uyv ∽ u =⇒ u · (yv)ω ∈ L).313

Since ux ∽ uy holds, then u·xv ∽ u ⇐⇒ u·yv ∽ u for all v ∈ Σ∗. Hence,314

by Definition 7, if uxv ̸∽ u (and thus uyv ̸∽ u), it follows that x ≈u
S y315

by definition of ≈u
S ; otherwise we have both uxv ∽ u and uyv ∽ u hold,316

and also u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L, following the definition of ≈u
L.317

It thus follows that x ≈u
S y.318

– Assume that x ≈u
S y. First, we have ux ∽ uy by definition of ≈u

S . Since319

ux ∽ uy holds, then u · xv ∽ u ⇐⇒ u · yv ∽ u for all v ∈ Σ∗. Assume320

by contradiction that x ≈u
L y. Then there must exist some v ∈ Σ∗ such321

that u · xv ∽ u · yv ∽ u holds but u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L does322

not hold. By definition of ≈u
S , it then follows that x ̸≈S

u y, violating our323

assumption. Hence, both ux ∽ uy and x ≈u
L y hold.324

Novel Families of Finite Automata 9

ϵ

M
Leading

a b

aa ab

a b

a
b

a, b

a
b

b

a

ϵ

N ϵS
Syntactic

a b

aa ab

a b

a
b

a, b

a
b

b

a

ϵ

a b

ab

Na
S

a b

a

b

b

a
a, b

ϵ

Nb
S

a, b

ϵ

a b

Naa
S

a b

a b
a, b

ϵ

a b

Nab
S

a b

a, b ba

ϵ

N ϵR
Recurrent

a, b

ϵ

Na
R

a, b

ϵ

Nb
R

a, b

ϵ

a b

Naa
R

a b

a b
a, b

ϵ

a b

Nab
R

a b

a, b ba

ϵ a

N ϵL
Limit

a, b
a, b

ϵ a

Na
L

a, b
a, b

ϵ

Nb
L

a, b

ϵ a

Naa
L

a, b
a, b

ϵ b

Nab
L

a, b
a, b

Fig. 1. Three types of FDFAs for L = aω + abω. The final states are marked with
double lines.

2. As an immediate result of the Item (1), we have that | ≈u
L | ≤ | ≈u

S | ≤325

| ∽ | · | ≈u
L |. We prove the second claim by showing that, for all u, x, y ∈ Σ∗,326

if ux ∽ uy and x ≈u
P y, then x ≈u

S y (and thus x ≈u
L y). Fix a word v ∈ Σ∗.327

Since ux ∽ uy holds, it follows that ux · v ∽ u ⇐⇒ uy · v ∽ u. Moreover, we328

have u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L because x ≈u
P y holds. By definition329

of ≈u
S , it follows that x ≈u

S y holds. Hence, x ≈u
L y holds as well. We then330

conclude that | ≈u
L | ≤ | ∽ | · | ≈u

P |.331332

According to Definition 1, we have x ∽ y iff T [∽](x) = T [∽](y) for all x, y ∈333

Σ∗. That is, M = (T [∽], ∅) is consistent with ∽, i.e., x ∽ y iff M(x) = M(y)334

for all x, y ∈ Σ∗. Hence, u · v ∽ u iff M(u) = M(u · v). In the remaining part335

of the paper, we may therefore mix the use of ∽ and M without distinguishing336

the two notations.337

We are now ready to give our main result of this section.338

10 Yong Li, Sven Schewe, Qiyi Tang

Theorem 2. Let L be an ω-regular language and FL=(M[∽], {N [≈u339

]}[u]∽∈Σ∗/∽
) be the limit FDFA of L. Then (1) FL has a finite number of states,340

(2) UP(FL) = UP(L), and (3) FL is saturated.341

Proof. Since the syntactic FDFA FS of L has a finite number of states [17]342

and FL is a coarser representation than FS (cf. Lemma 1), FL must have finite343

number of states as well.344

To show UP(FL) ⊆ UP(L), assume that w ∈ UP(FL). By Definition 3, a345

UP-word w is accepted by FL if there exists a decomposition (u, v) of w such346

that M(u) = M(u·v) (equivalently, u·v ∽ u) and v ∈ L∗(N ũ
L) where ũ = M(u).347

Here ũ is the representative word for the equivalence class [u]∽. Similarly, let348

ṽ = N ũ
L (v). By Definition 9, we have ũ · ṽ ∽ ũ =⇒ ũ · ṽω ∈ L holds as ṽ is a349

final state of N ũ
L . Since v ≈ũ

L ṽ (i.e., N ũ
L (v) = N ũ

L (ṽ)), ũ · v ∽ ũ =⇒ ũ · vω ∈ L350

holds as well. It follows that u · v ∽ u =⇒ u · vω ∈ L since u ∽ ũ and351

u · v ∽ ũ · v (equivalently, M(u · v) = M(ũ · v)). Together with the assumption352

that M(u · v) = M(u) (i.e, u ∽ u · v), we then have that u · vω ∈ L holds. So,353

UP(FL) ⊆ UP(L) also holds.354

To show that UP(L) ⊆ UP(FL) holds, let w ∈ UP(L). For a UP-word w ∈ L,355

we can find a normalized decomposition (u, v) of w such that w = u · vω and356

u · v ∽ u (i.e., M(u) = M(u · v)), since the index of ∽ is finite (cf. [3] for more357

details). Let ũ = M(u) and ṽ = N ũ
L (v). Our goal is to prove that ṽ is a final358

state of N ũ
L . Since u ∽ ũ and u ·vω ∈ L, then ũ ·vω ∈ L holds. Moreover, ũ ·v ∽ ũ359

holds as well because ũ = M(ũ) = M(u) = M(ũ ·v) = M(u ·v). (Recall that M360

is deterministic.) Hence, ũ · v ∽ ũ =⇒ ũ · vω ∈ L holds. Since ṽ ≈ũ
L v, it follows361

that ũ · ṽ ∽ ũ =⇒ ũ · ṽω ∈ L also holds. Hence, ṽ is a final state. Therefore,362

(u, v) is accepted by FL, i.e., w ∈ UP(FL). It follows that UP(L) ⊆ UP(FL).363

Now we show that FL is saturated. Let w be a UP-word. Let (u, v) and (x, y)364

be two normalized decompositions of w with respect to M (or, equivalently, to365

∽). Assume that (u, v) is accepted by FL. From the proof above, it follows that366

both u · v ∽ u and u · vω ∈ L hold. So, we know that u · vω = x · yω ∈ L. Let367

x̃ = M(x) and ỹ = N x̃
L(y). Since (x, y) is a normalized decomposition, it follows368

that x · y ∽ x. Again, since x̃ ∽ x, x̃ · y ∽ x̃ and x̃ · yω ∈ L also hold. Obviously,369

x̃ ·y ∽ x̃ =⇒ x̃ ·yω ∈ L holds. By the fact that y ≈x̃
L ỹ, x̃ · ỹ ∽ x̃ =⇒ x̃ · ỹω ∈ L370

holds as well. Hence, ỹ is a final state of N x̃
L . In other words, (x, y) is also371

accepted by FL. The proof for the case when (u, v) is not accepted by FL is372

similar.373

3.2 Size comparison with other canonical FDFAs374

As aforementioned, Angluin and Fisman in [3] showed that for a variant of the375

family of languages Ln given by Michel [18], its periodic FDFA has Ω(n!) states,376

while the syntactic FDFA only has O(n2) states. Since limit FDFAs are smaller377

than syntactic FDFAs, it immediately follows that:378

Corollary 2. There exists a family of languages Ln such that its periodic FDFA379

has Ω(n!) states, while the limit FDFA only has O(n2) states.380

Novel Families of Finite Automata 11

Now we consider the size comparison between limit and recurrent FDFAs.381

Consider again the limit and recurrent FDFAs of the language L = aω + abω382

in Figure 1: one can see that limit FDFA and recurrent FDFA have the same383

number of states, even though with different progress DFAs. In fact, it is easy384

to see that limit FDFAs and recurrent FDFAs are incomparable regarding the385

their number of states, even when only the ω-regular languages recognized by386

weak DBAs are considered. A weak DBA (wDBA) is a DBA in which each SCC387

contains either all accepting transitions or non-accepting transitions.388

Lemma 2. If L is a wDBA-recognizable language, then its limit FDFA and its389

recurrent FDFA have incomparable size.390

Proof. We fix u, x, y ∈ Σ∗ in the proof. Since L is recognized by a wDBA, the391

TS T [∽] of the leading DFA M is isomorphic to the minimal wDBA recognizing392

L [16]. Therefore, a state [u]∽ of M is either transient, in a rejecting SCC, or in393

an accepting SCC. We consider these three cases.394

– Assume that [u]∽ is a transient SCC/state. Then for all v ∈ Σ∗, u · x · v ̸∽ u395

and u · y · v ̸∽ u.396

By the definitions of ≈u
R and ≈u

L, there are a non-final class [ϵ]≈u
L
and possibly397

a sink final class [σ]≈u
L
for ≈u

L where σ ∈ Σ, while there is a non-final class398

[ϵ]≈u
R
for ≈u

R. Hence, x ≈u
L y implies x ≈u

R y.399

– Assume that [u]∽ is in a rejecting SCC. Obviously, for all v ∈ Σ∗, we have400

that u · x · v ∽ u =⇒ u · (x · v)ω /∈ L and u · y · v ∽ u =⇒ u · (y · v)ω /∈ L.401

Therefore, there is only one equivalence class [ϵ]≈u
R

for ≈u
R. It follows that402

x ≈u
L y implies x ≈u

R y.403

– Assume that [u]∽ is in an accepting SCC. Clearly, for all v ∈ Σ∗, we have404

that both u ·x ·v ∽ u =⇒ u ·(x ·v)ω ∈ L and u ·y ·v ∽ u =⇒ u ·(y ·v)ω ∈ L405

hold. That is, we have either u ·x ·v ∽ u∧u · (x ·v)ω ∈ L hold, or u ·x ·v ̸∽ u.406

If x ≈u
R y holds, it immediately follows that (u · x · v ∽ u =⇒ u · (x · v)ω ∈407

L) ⇐⇒ (u · y · v ∽ u =⇒ u · (y · v)ω ∈ L) holds. Hence, x ≈u
R y implies408

x ≈u
L y.409

Based on this argument, it is easy to find a language L such that its limit410

FDFA is more succinct than its recurrent FDFA and vice versa, depending on411

the size comparison between rejecting SCCs and accepting SCCs. Therefore, the412

lemma follows.413

Lemma 2 reveals that limit FDFAs and recurrent FDFAs are incomparable in414

size. Nonetheless, we still provide a family of languages Ln in Lemma 3 such that415

the recurrent FDFA has Θ(n2) states, while its limit FDFA only has Θ(n) states.416

One can, of course, obtain the opposite result by complementing Ln. Notably,417

Lemma 3 also gives a matching lower bound for the size comparison between418

syntactic FDFAs and limit FDFAs, since syntactic FDFAs can be quadratically419

larger than their limit FDFA counterparts, as stated in Lemma 1.420

Lemma 3. Let Σn = {0, 1, · · · , n}. There exists an ω-regular language Ln over421

Σn such that its limit FDFA has Θ(n) states, while both its syntactic and recur-422

rent FDFAs have Θ(n2) states.423

12 Yong Li, Sven Schewe, Qiyi Tang

q0 q1 q2

q�

◯ ◯ ◯ qn

0 1 2 n

1

∗
2

∗
3

∗
n

∗

0

∗Σn

B

Fig. 2. The ω-regular language Ln represented with a DBA B. The dashed arrows are
Γ -transitions and ∗-transitions represent the missing transitions.

Proof. The family of languages Ln is defined as the language of the DBA B =424

(Q,Σn, q0, δ, Γ) as shown in Figure 2, where Σn = {0, 1, · · · , n}. First, one can425

easily verify that the index of ∽Ln
is n + 2. Here we add the subscript Ln to426

∽Ln
to distinguish it from ∽ for the language L we fix for the whole paper. In427

fact, the leading DFA induced by ∽Ln
is the exactly the TS of B. Here, we only428

show that the limit FDFA and the recurrent FDFA of Ln, have Θ(n) states and429

Θ(n2) states, respectively. We refer to Appendix A for detailed proofs of this430

lemma.431

Now we fix a word u and consider the index of ≈u
L. Let x ∈ Σ∗. Obviously, if432

q⊥ = B(u), then for all v ∈ Σ∗, we have u ·x ·v ∽Ln
u but u ·(x ·v)ω /∈ Ln. Hence,433

| ≈u
L | = 1. Now let qi = B(u) with 0 ≤ i ≤ n. For all v ∈ Σ∗, if u · x · v ∽Ln

u434

holds, it must be the case that u ·(x ·v)ω ∈ Ln unless x ·v = ϵ. Hence, | ≈u
L | = 2.435

It follows that the limit FDFA of Ln has exactly 2× (n+ 1) + 1+ n+ 2 ∈ Θ(n)436

states.437

Now we consider the index of ≈u
R for a fixed u ∈ Σ∗. Similarly, when q⊥ =438

B(u), | ≈u
R | = 1 since for all v ∈ Σ∗, we have u · x · v ∽Ln

u ∧ u · (x · v)ω /∈ Ln.439

Now we consider that qk = B(u) with 0 ≤ k ≤ n. Let x1, x2 ∈ Σ∗. First,440

assume that B(u · x1) ̸= B(u · x2). W.l.o.g., let qj = B(u · x2) with 0 ≤ j ≤ n441

and let qi = B(u · x1) with either i < j or qi = q⊥. We can easily construct442

a finite word v such that qk = B(u) = B(u · x2 · v), i.e., u · x2 · v ∽Ln u, and443

u · (x2 · v)ω ∈ Ln. For example, we can let v = (j + 1) · · ·n · 0 · · · k if j < k ≤ n.444

Hence, u · x2 · v ∽Ln
u ∧ u · (x2 · v)ω ∈ Ln holds. On the contrary, it is easy to445

see that q⊥ = B(u · x1 · v) = δ(qi, j + 1) since either j + 1 > i+ 1 or qi = q⊥. In446

other words, we have u · x1 · v ̸∽Ln
u ∧ u · (x1 · v)ω /∈ Ln. By definition of ≈u

R,447

x1 ̸≈u
R x2. Hence, | ≈u

R | ≥ n + 2. Next, we assume that B(u · x1) = B(u · x2).448

For a word v ∈ Σ∗, it is easy to see that u · x1 · v ∽Ln u ⇐⇒ u · x2 · v ∽Ln u.449

Moreover, since u · x1 · v ∽Ln
u implies u · (x1 · v)ω ∈ Ln, we thus have that450

u · x1 · v ∽Ln
u ∧ u · (x1 · v)ω ∈ Ln ⇐⇒ u · x2 · v ∽Ln

u ∧ u · (x2 · v)ω ∈ Ln.451

In other words, x1 ≈u
R x2, which implies that | ≈u

R | ≤ n + 2. Hence | ≈u
R | =452

n + 2 when B(u) ̸= q⊥. It follows that the recurrent FDFA of Ln has exactly453

(n+ 2)× (n+ 1) + 1 + (n+ 2) ∈ Θ(n2) states.454

Novel Families of Finite Automata 13

Finally, it is time to derive yet another “Myhill-Nerode” theorem for ω-455

regular languages, as stated in Theorem 3. This result follows immediately from456

Lemma 1 and a similar theorem about syntactic FDFAs [17].457

Theorem 3. Let FL be the limit FDFA of an ω-language L. Then L is regular458

if, and only if FL has finite number of states.459

For identifying whether L is DBA-recognizable with FDFAs, a straight for-460

ward way as mentioned in the introduction is to go through determinization,461

which is, however, exponential in the size of the input FDFA. We show in Sec-462

tion 4 that there is a polynomial-time algorithm using our limit FDFAs.463

4 Limit FDFAs for identifying DBA-recognizable464

languages465

Given an ω-regular language L, we show in this section how to use the limit466

FDFA of L to check whether L is DBA-recognizable in polynomial time. To this467

end, we will first introduce how the limit FDFA of L looks like in Section 4.1468

and then introduce the deciding algorithm in Section 4.2.469

4.1 Limit FDFA for DBA-recognizable languages470

Bohn and Löding [5] construct a type of family of DFAs FBL from a set S+
471

of positive samples and a set S− of negative samples, where the progress DFA472

accepts exactly the language Vu = {x ∈ Σ+ : ∀v ∈ Σ∗. if u · xv ∽ u, then u ·473

(xv)ω ∈ L}4. When the samples S+ and S− uniquely characterize a DBA-474

recognizable language L, FBL recognizes exactly L.475

The progress DFA N u
L of our limit FDFA FL of L usually accepts more words476

than Vu. Nonetheless, we can still find one final equivalence class that is exactly477

the set Vu, as stated in Lemma 4.478

Lemma 4. Let L be a DBA-recognizable language and479

FL=(M, {N u
L}[u]∽∈Σ∗/∽

) be the limit FDFA of L. Then, for each progress480

DFA N u
L with L∗(N u

L) ̸= ∅, there must exist a final state x̃ ∈ Fu such that481

[x̃]≈u
L
= {x ∈ Σ+ : ∀v ∈ Σ∗. u · (x · v) ∽ u =⇒ u · (x · v)ω ∈ L}.482

Proof. In [5], it is shown that for each equivalence class [u]∽ of ∽, there exists483

a regular language Vu = {x ∈ Σ+ : ∀v ∈ Σ∗. if u · xv ∽ u, then u · (xv)ω ∈ L}.484

We have also provided the proof of the existence of Vu in Appendix C, adapted485

to our notations. The intuition of Vu is the following. Let B = (Σ,Q, ι, δ, Γ) be486

a DBA accepting L. Then, [u]∽ corresponds to a set of states S = {q ∈ Q : q =487

δ(ι, u′), u′ ∈ [u]∽} in B. For each q ∈ S, we can easily create a regular language488

Vq such that x ∈ Vq iff over the word x, Bq (the DBA derived from B by setting489

q its initial state) visits an accepting transition, Bq goes to an SCC that cannot490

4 Defining directly a progress RC ≈u that recognizes Vu is hard since Vu is quantified
over all v-extensions.

14 Yong Li, Sven Schewe, Qiyi Tang

go back to q, or Bq goes to a state that cannot go back to q unless visiting an491

accepting transition. Then, Vu = ∩q∈SVq.492

Now we show that Vu is an equivalence class of ≈u
L as follows. On one hand,493

for every two different words x1, x2 ∈ Vu, we have that x1 ≈u
L x2, which is494

obvious by the definition of Vu. On the other hand, it is easy to see that x′ ̸≈u
L x495

for all x′ /∈ Vu and x ∈ Vu because there exists some v ∈ Σ∗ such that u·x′ ·v ∽ u496

but u · (x′ · v)ω /∈ L. Hence, Vu is indeed an equivalence class of ≈u
L. Obviously,497

Vu ⊆ L∗(N u
L), as we can let v = ϵ, so for every word x ∈ Vu, we have that498

u · x ∽ u =⇒ u · xω ∈ L. Let x̃ = N u
L (x) for a word x ∈ Vu. It follows that x̃ is499

a final state of N u
L and we have [x̃]≈u

L
= Vu. This completes the proof.500

By Lemma 4, we can define a variant of limit FDFAs for only DBAs with501

less number of final states. This helps to reduce the complexity when translating502

FDFAs to NBAs [2,7,13]. Let n be the number of states in the leading DFA M503

and k be the number of states in the largest progress DFA. Then the resultant504

NBA from an FDFA has O(n2k3) states [2, 7, 13]. However, if the input FDFA505

is FB as in Definition 10, the complexity of the translation will be O(n2k2), as506

there is at most one final state, rather than k final states, in each progress DFA.507

Definition 10 (Limit FDFAs for DBAs). The limit FDFA FB =508

(M, {N u
B}) of L is defined as follows.509

The transition systems of M and N u
B for each [u]∽ ∈ Σ∗/∽ are exactly the510

same as in Definition 9.511

The set of final states Fu contains the equivalence classes [x]≈u
L

such that,512

for all v ∈ Σ∗, u · xv ∽ u =⇒ u · (xv)ω ∈ L holds.513

The change to the definition of final states would not affect the language514

that the limit FDFAs recognize, but only their saturation properties. We say515

an FDFA F is almost saturated if, for all u, v ∈ Σ∗, we have that if (u, v) is516

accepted by F , then (u, vk) is accepted by F for all k ≥ 1. According to [13],517

if F is almost saturated, then the translation algorithm from FDFAs to NBAs518

in [2,7,13] still applies (cf. Appendix B about details of the NBA construction).519

Theorem 4. Let L be a DBA-recognizable language and FB be the limit FDFA520

induced by Definition 10. Then (1) UP(FB) = UP(L) and (2) FB is almost521

saturated but not necessarily saturated.522

Proof. The proof for UP(FB) ⊆ UP(L) is trivial, as the final states defined523

in Definition 10 must also be final in Definition 9. The other direction can be524

proved based on Lemma 4. Let w ∈ UP(L) and B = (Q,Σ, ι, δ, Γ) be a DBA525

accepting L. Let ρ be the run of B over w. We can find a decomposition (u, v) of526

w such that there exists a state q with q = δ(ι, u) = δ(ι, u · v) and (q, v[0]) ∈ Γ .527

As in the proof of Lemma 4, we are able to construct the regular language528

Vu = {x ∈ Σ+ : ∀y ∈ Σ∗, u · x · y ∽ u =⇒ u · (x · y)ω ∈ L}. We let S = {p ∈529

Q : L(Bq) = L(Bp)}. For every state p ∈ S, we have that vω ∈ L(Bp). For each530

p ∈ S, we select an integer kp > 0 such that the finite run p
vkp−−→ δ(p, vkp) visits531

some accepting transition. Then we let k = maxp∈S kp. By definition of Vu, it532

Novel Families of Finite Automata 15

follows that vk ∈ Vu. That is, Vu is not empty. According to Lemma 4, we have533

a final equivalence class [x]≈u
L
= Vu with vk ∈ [x]≈u

L
. Moreover, u · vk ∽ u since534

q = δ(ι, u) = δ(q, v). Hence, (u, vk) is accepted by FB , i.e., w ∈ UP(FB). It535

follows that UP(FB) = UP(L).536

Now we prove that FB = (M, {N u
B}) is not necessarily saturated. Let537

L = (Σ∗ · aa)ω. Obviously, L is DBA recognizable, and ∽ has only one equiv-538

alence class, [ϵ]∽. Let w = aω ∈ UP(L). Let (u = ϵ, v = a) be a normalized539

decomposition of w with respect to ∽ (thus, M). We can see that there exists a540

finite word x (e.g., x = b is such a word) such that ϵ ·a ·x ∽ ϵ and ϵ · (a ·x)ω /∈ L.541

Thus, (ϵ, a) will not be accepted by FB . Hence FB is not saturated. Nonetheless,542

it is easy to verify that FB is almost saturated. Assume that (u, v) is accepted543

by FB . Let ũ = M(u) and ṽ = N ũ
B(v). Since ṽ is the final state, then, according544

to Definition 10, we have for all e ∈ Σ∗ that ũ · ṽe ∽ ũ =⇒ ũ · (ṽe)ω ∈ L. Since545

v ≈u
L ṽ, ũ · ve ∽ ũ =⇒ ũ · (ve)ω ∈ L also holds for all e ∈ Σ∗. Let e = vk · e′546

where e′ ∈ Σ∗, k ≥ 0. It follows that ũ · vke′ ∽ ũ =⇒ ũ · (vke′)ω ∈ L holds for547

k ≥ 1 as well. Therefore, for all e′ ∈ Σ∗, k ≥ 1, (ũ · ṽe′ ∽ ũ =⇒ ũ · (ṽe′)ω ∈548

L) ⇐⇒ (ũ · vke′ ∽ ũ =⇒ ũ · (vke′)ω ∈ L) holds. In other words, ṽ ≈ũ
L vk for549

all k ≥ 1. Together with that uvk ∽ u, (u, vk) is accepted by FB for all k ≥ 1.550

Hence, FB is almost saturated.551

4.2 Deciding DBA-recognizable languages552

We show next how to identify whether a language L is DBA-recognizable with553

our limit FDFA FL. Our decision procedure relies on the translation of FDFAs554

to NBAs/DBAs. In the following, we let n be the number of states in the leading555

DFA M and k be the number of states in the largest progress DFA. We first556

give some previous results below.557

Lemma 5 ([13, Lemma 6]). Let F be an (almost) saturated FDFA of L. Then558

one can construct an NBA A with O(n2k3) states such that L(A) = L.559

Now we consider the translation from FDFA to DBAs. By Lemma 4, there is560

a final equivalence class [x]≈u
L
that is a co-safety language in the limit FDFA of L.561

Co-safety regular languages are regular languages R ⊆ Σ∗ such that R ·Σ∗ = R.562

It is easy to verify that if x′ ∈ [x]≈u
L
, then x′v ∈ [x]≈u

L
for all v ∈ Σ∗, based563

on the definition of ≈u
L. So, [x]≈u

L
is a co-safety language. The DFAs accepting564

co-safety languages usually have a sink final state f (such that f transitions to565

itself over all letters in Σ). We therefore have the following.566

Corollary 3. If L is DBA-recognizable then every progress DFA N u
L of the limit567

FDFA FL of L either has a sink final state, or no final state at all.568

Our limit FDFA FB of L, as constructed in Definition 10, accepts the same569

co-safety languages in the progress DFAs as the FDFA obtained in [5], although570

they may have different transition systems. Nonetheless, we show that their571

DBA construction still works on FB . To make the construction more general,572

we assume an FDFA F = (M, {N q}q∈Q) where M = (Q,Σ, ι, δ) and, for each573

q ∈ Q, we have N q = (Qq, Σ, ιq, δq, Fq).574

16 Yong Li, Sven Schewe, Qiyi Tang

Definition 11 ([5]). Let F = (M, {N q}q∈Q) be an FDFA. Let T [F] be the575

TS constructed from F defined as the tuple T [F] = (QT , Σ, ιT , δT) and Γ ⊆576

{(q, σ) : q ∈ QT , σ ∈ Σ} be a set of transitions where577

– QT := Q×⋃
q∈Q Qq;578

– ιT := (ι, ιι);579

– For a state (m, q) ∈ QT and σ ∈ Σ, let q′ = δm̃(q, σ) where N m̃ is the
progress DFA that q belongs to and let m′ = δ(m,σ). Then

δ((m, q), σ) =

{
(m′, q′) if q′ /∈ Fm̃

(m′, ιm′) if q′ ∈ Fm̃

– ((m, q), σ) ∈ Γ if q′ ∈ Fm̃580

Lemma 6. If F is an FDFA with only sink final states. Let B[F] = (T [F], Γ)581

as given in Definition 11. Then, UP(L(B[F])) ⊆ UP(F).582

Proof. Let w ∈ UP(L(B[F])) and ρ be its corresponding accepting run. Since w583

is a UP-word and B[F] is a DBA of finite states, then we must be able to find584

a decomposition (u, v) of w such that (m, ιm) = B[F](u) = B[F](u · v), where ρ585

will visit a Γ -transition whose destination is (m, ιm) for infinitely many times.586

It is easy to see that M(u · v) = M(u) since B[F](u) = B[F](u · v). Moreover,587

we can show there must be a prefix of v, say v′, such that v′ ∈ L∗(Nm). Since588

L∗(Nm) is co-safety, we have that v ∈ L∗(Nm). Thus, (u, v) is accepted by F .589

By Definition 3, w ∈ UP(F). Therefore, UP(L(B[F])) ⊆ UP(F).590

By Corollary 3, FB has only sink final states; so, we have that591

UP(L(B[FB])) ⊆ UP(FB). However, Corollary 3 is only a necessary condition592

for L being DBA-recognizable, as explained below. Let L be an ω-regular lan-593

guage over Σ = {1, 2, 3, 4} such that a word w ∈ L iff the maximal number that594

occurs infinitely often in w is even. Clearly, L has one equivalence class [ϵ]∽ for595

∽. The limit FDFA F = (M, {N ϵ
L}) of L is depicted in Figure 3. We can observe

ϵ ϵ

2

4

3

2, 4

1, 3

2

1 4

3

3

4

3

1, 2

4

Σ

M N ϵ
L

Fig. 3. An example limit FDFA F = (M, {N ϵ
L})

Novel Families of Finite Automata 17

596

that the equivalence class [4]≈ϵ
L
corresponds to a co-safety language. Hence, the597

progress DFA N ϵ
L has a sink final state. However, L is not DBA-recognizable.598

If we ignore the final equivalence class [2]≈ϵ
L
and obtain the variant limit FDFA599

FB as given in Definition 10, then we have UP(FB) ̸= UP(L) since the ω-word600

2ω is missing. But then, by Theorem 4, this change would not lose words in L if601

L is DBA-recognisable, leading to contradiction. Therefore, L is shown to be not602

DBA-recognizable. So the key of the decision algorithm here is to check whether603

ignoring other final states will retain the language. With Lemma 7, we guarantee604

that B[FB] accepts exactly L if L is DBA-recognizable.605

Lemma 7. Let L be a DBA-recognizable language. Let FB be the limit FDFA606

L, as constructed in Definition 10. Let B[FB] = (T [FB], Γ), where T [FB] and607

Γ are the TS and set of transitions, respectively, defined in Definition 11 from608

FB. Then UP(FB) = UP(L) ⊆ UP(L(B[FB])).609

Proof. We first assume for contradiction that some w ∈ L is rejected by B[FB].610

For this, we consider the run ρ = (q0, w[0], q1)(q1, w[1], q2) . . . of B[FB] on w. Let611

i ∈ ω be such that (qi−1, w[i−1], qi) is the last accepting transition in ρ, and i = 0612

if there is no accepting transition at all in ρ. We also set u = w[0 · · · i − 1] and613

w′ = w[i · · ·]. By Definition 11, this ensures that B[FB] is in state ([u]∽, ι[u]∽)614

after reading u and will not see accepting transitions (or leave N [u]∽
B) while615

reading the tail w′.616

Let D = (Q′, Σ, ι′, δ′, Γ ′) be a DBA that recognizes L and has only reachable617

states. As D recognizes L, it has the same right congruences as L; by slight abuse618

of notation, we refer to the states in Q′ that are language equivalent to the state619

reachable after reading u by [u]∽ and note that D is in some state of [u]∽ after620

(and only after) reading a word u′ ∽ u.621

As u · w′, and therefore u′ · w′ for all u′ ∽ u, are in L, they are accepted622

by D, which in particular means that, for all q ∈ [u]∽, there is an iq such that623

there is an accepting transition in the first iq steps of the run of Dq (the DBA624

obtained from D by setting the initial state to q) on w′. Let i+ be maximal625

among them and v = w[i · · · i + i+]. Then, for u′ ∽ u and any word u′vv′, we626

either have u′vv′ ̸∽ u, or u′vv′ ∽ u and u′ · (vv′)ω ∈ L. (The latter is because v627

is constructed such that a run of D on this word will see an accepting transition628

while reading each v, and thus infinitely many times.) Thus, N [u]∽
B will accept629

any word that starts with v, and therefore be in a final sink after having read v.630

But then B[FB] will see another accepting transition after reading v (at the631

latest after having read uv), which closes the contradiction and completes the632

proof.633

So, our decision algorithm works as follows. Assume that we are given the634

limit FDFA FL = (M, {N q
L}) of L.635

1. We first check whether there is a progress DFA N q
L such that there are final636

states but without the sink final state. If it is the case, we terminate and637

return “NO”.638

18 Yong Li, Sven Schewe, Qiyi Tang

2. Otherwise, we obtain the FDFA FB by keeping the sink final state as the639

sole final state in each progress DFA (cf. Definition 10). Let A = NBA(FL)640

be the NBA constructed from FL (cf. Lemma 5) and B = DBA(FB) be641

the DBA constructed from FB (cf. Definition 11). Obviously, we have that642

UP(L(A)) = UP(L) and UP(L(B)) ⊆ UP(FB) = UP(L).643

3. Then we check whether L(A) ⊆ L(B) holds. If so, we return “YES”, and644

otherwise “NO”.645

Now we are ready to give the main result of this section.646

Theorem 5. Deciding whether L is DBA-recognizable can be done in time poly-647

nomial in the size of the limit FDFA of L.648

Proof. We first prove our decision algorithm is correct. If the algorithm returns649

“YES”, clearly, we have L(A) ⊆ L(B). It immediately follows that UP(L) =650

UP(L(A)) ⊆ UP(L(B)) ⊆ UP(FB) ⊆ UP(FL) = UP(L) according to Lemmas 5651

and 6. Hence, UP(L(B)) = UP(L), which implies that L is DBA-recognizable.652

For the case that the algorithm returns “NO”, we analyze two cases:653

1. F has final states but without sink accepting states for some progress DFA.654

By Corollary 3, L is not DBA-recognizable.655

2. L(A) ̸⊆ L(B). It means that UP(L) ̸⊆ UP(L(B)) (by Lemma 5). It follows656

that L is not DBA-recognizable by Lemma 7.657

The algorithm is therefore sound; its completeness follows from Lemmas 6 and 7.658

The translations above are all in polynomial time. Moreover, checking the659

language inclusion between an NBA and a DBA can also be done in polynomial660

time [12]. Hence, the deciding algorithm is also in polynomial time in the size of661

the limit FDFA of L.662

Recall that, our limit FDFAs are dual to recurrent FDFAs. One can observe663

that, for DBA-recognizable languages, recurrent FDFAs do not necessarily have664

sink final states in progress DFAs. For instance, the ω-regular language L =665

aω + abω is DBA-recognizable, but its recurrent FDFA, depicted in Fig. 1, does666

not have sink final states. Hence, our deciding algorithm does not work with667

recurrent FDFAs.668

5 Underspecifying progress right congruences669

Recall that recurrent and limit progress DFAs N u either treat don’t care words670

in Cu = {v ∈ Σ+ : uv ̸∽ u} as rejecting or accepting, whereas it really does not671

matter whether or not they are accepted. So why not keep this question open?672

We do just this in this section; however, we find that treating the progress with673

maximal flexibility comes at a cost: the resulting right progress relation ≈u
N is674

no longer an equivalence relation, but only a reflexive and symmetric relation675

over Σ∗ ×Σ∗ such that x ≈u
N y implies xv ≈u

N yv for all u, x, y, v ∈ Σ∗.676

For this, we first introduce Right Pro-Congruences (RP) as relations on words677

that satisfy all requirements of an RC except for transitivity.678

Novel Families of Finite Automata 19

Definition 12 (Progress RP). Let [u]∽ be an equivalence class of ∽. For
x, y ∈ Σ∗, we define the progress RP ≈u

N as follows:

x ≈u
N y iff ∀v ∈ Σ∗. (uxv ∽ u∧uyv ∽ u) =⇒ (u ·(xv)ω ∈ L ⇐⇒ u ·(yv)ω ∈ L).

Obviously, ≈u
N is a RP, i.e., for x, y, v′ ∈ Σω, if x ≈u

N y, then xv′ ≈u
N679

yv′. That is, assume that x ≈u
N y and we want to prove that, for all e ∈ Σ∗,680

(u·xv′e ∽ u∧u·yv′e ∽ u) =⇒ (u·(xv′e)ω ∈ L ⇐⇒ u·(yv′e)ω ∈ L). This follows681

immediately by setting v = v′e in Definition 12 for all e ∈ Σ∗ since x ≈u
N y. As682

≈u
N is not necessarily an equivalence relation5, so that we cannot argue directly683

with the size of its index. However, we can start with showing that ≈u
N is coarser684

than ≈u
P ,≈u

S ,≈u
R, and ≈u

L.685

Lemma 8. For u, x, y ∈ Σ∗, we have that if x ≈u
K y, then x ≈u

N y, where686

K ∈ {P, S,R, L}.687

Proof. First, if x ≈u
P y, x ≈u

N y holds trivially.688

For syntactic, recurrent, and limit RCs, we first argue for fixed v ∈ Σ∗ that689

– ux ∽ uy =⇒ uxv ∽ uyv, and therefore690

ux ∽ uy ∧
(
u · x · v ∽ u =⇒ (u · (x · v)ω ∈ L ⇐⇒ u · (y · v)ω ∈ L)

)
691

|= (uxv ∽ u ∧ uyv ∽ u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L),692

– (u · x · v ∽ u ∧ u · (xv)ω ∈ L) ⇐⇒ (u · yv ∽ u ∧ u · (y · v)ω ∈ L)693

|= (uxv ∽ u ∧ uyv ∽ u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L), and694

– (u · x · v ∽ u =⇒ u · (x · v)ω ∈ L) ⇐⇒ (u · y · v ∽ u =⇒ u · (y · v)ω ∈ L)695

|= (uxv ∽ u ∧ uyv ∽ u) =⇒ (u · (xv)ω ∈ L ⇐⇒ u · (yv)ω ∈ L),696

which is simple Boolean reasoning. As this holds for all v ∈ Σ∗ individually, it697

also holds for the intersection over all v ∈ Σ∗, so that the claim follows.698

Now, it is easy to see that we can use any RC ≈ that refines ≈u
N and use699

it to define a progress DFA. It therefore makes sense to define the set of RCs700

that refine ≈u
N as RC(≈u

N) = {≈ | ≈⊂≈u
N is a RC}, and the best index | ≈u

N |701

of our progress RP as | ≈u
N | = min{| ≈ | | ≈∈ RC(≈u

N)}. With this definition,702

Corollary 4 follows immediately.703

Corollary 4. For u ∈ Σ∗, we have that | ≈u
N | ≤ | ≈u

K | for all K ∈ {P, S,R, L}.704

We note that the restriction of ≈u
N to Cu×Cu is still an equivalence relation,705

where Cu = {v ∈ Σ∗ : uv ∽ u} are the words the FDFA acceptance conditions706

really care about. This makes it easy to define a DFA over each ≈∈ RC(≈u
N)707

with finite index: Cu/≈u
N

is good if it contains a word v s.t. u · vω ∈ L, and a708

quotient of Σ∗/≈ is accepting if it intersects with a good quotient (note that it709

intersects with at most one quotient of Cu). With this preparation, we now show710

the following.711

5 In the language L = aω + abω from the example of Figure 1, for example, we have
a ≈ab

N ϵ and a ≈ab
N b, but b ̸≈ab

N ϵ.

20 Yong Li, Sven Schewe, Qiyi Tang

Theorem 6. Let L be an ω-regular language and FL=(M[∽], {N [≈u712

]}[u]∽∈Σ∗/∽
) be the limit FDFA of L s.t. ≈u∈ RC(≈u

N) with finite index for713

all u. Then (1) FL has a finite number of states, (2) UP(FL) = UP(L), and (3)714

FL is saturated.715

The proof is similar to the proof of Theorem 2 and moved to Appendix D.716

6 Discussion and future work717

Our limit FDFAs fit nicely into the learning framework for FDFAs [3] and are718

already available for use in the learning library ROLL6 [14]. Since one can treat719

an FDFA learner as comprised of a family of DFA learners in which one DFA720

of the FDFA is learned by a separate DFA learner, we only need to adapt the721

learning procedure for progress DFAs based on our limit progress RCs, without722

extra development of the framework; see Appendix E for details. We leave the723

empirical evaluation of our limit FDFAs in learning ω-regular languages as future724

work.725

We believe that limit FDFAs are complementing the existing set of canonical726

FDFAs, in terms of recognizing and learning ω-regular languages. Being able727

to easily identify DBA-recognizable languages, limit FDFAs might be used in728

a learning framework for DBAs using membership and equivalence queries. We729

leave this to future work. Finally, we have looked at retaining maximal flexibility730

in the construction of FDFA by moving from progress RCs to progress RPs.731

While this reduces size, it is no longer clear how to construct them efficiently,732

which we leave as a future challenge.733

Acknowledgements We thank the anonymous reviewers for their valu-734

able feedback. This work has been supported by the EPSRC through grants735

EP/X021513/1 and EP/X017796/1.736

References737

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-738

put. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6, https:739

//doi.org/10.1016/0890-5401(87)90052-6740

2. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as Acceptors of ω-Regular741

Languages. Logical Methods in Computer Science 14(1) (2018)742

3. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.743

650, 57–72 (2016). https://doi.org/10.1016/j.tcs.2016.07.031, https://doi.org/744

10.1016/j.tcs.2016.07.031745

4. Angluin, D., Fisman, D.: Regular ω-languages with an informative right congru-746

ence. Inf. Comput. 278, 104598 (2021). https://doi.org/10.1016/j.ic.2020.104598,747

https://doi.org/10.1016/j.ic.2020.104598748

6 https://github.com/iscas-tis/roll-library

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1016/j.ic.2020.104598
https://doi.org/10.1016/j.ic.2020.104598
https://github.com/iscas-tis/roll-library

Novel Families of Finite Automata 21

5. Bohn, L., Löding, C.: Passive learning of deterministic Büchi automata749

by combinations of DFAs. In: Bojanczyk, M., Merelli, E., Woodruff,750

D.P. (eds.) 49th International Colloquium on Automata, Languages,751

and Programming, ICALP 2022, July 4-8, 2022, Paris, France. LIPIcs,752

vol. 229, pp. 114:1–114:20. Schloss Dagstuhl - Leibniz-Zentrum für In-753

formatik (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.114, https:754

//doi.org/10.4230/LIPIcs.ICALP.2022.114755

6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.756

Int. Congress on Logic, Method, and Philosophy of Science. 1960. pp. 1–12. Stan-757

ford University Press (1962)758

7. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of ratio-759

nal w -languages. In: Brookes, S.D., Main, M.G., Melton, A., Mislove, M.W.,760

Schmidt, D.A. (eds.) Mathematical Foundations of Programming Semantics,761

9th International Conference, New Orleans, LA, USA, April 7-10, 1993,762

Proceedings. Lecture Notes in Computer Science, vol. 802, pp. 554–566.763

Springer (1993). https://doi.org/10.1007/3-540-58027-1 27, https://doi.org/10.764

1007/3-540-58027-1_27765

8. Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of transi-766

tion labeled büchi automata. In: Albers, S., Marchetti-Spaccamela, A., Matias,767

Y., Nikoletseas, S.E., Thomas, W. (eds.) Automata, Languages and Program-768

ming, 36th Internatilonal Colloquium, ICALP 2009, Rhodes, Greece, July 5-12,769

2009, Proceedings, Part II. Lecture Notes in Computer Science, vol. 5556, pp.770

151–162. Springer (2009). https://doi.org/10.1007/978-3-642-02930-1 13, https:771

//doi.org/10.1007/978-3-642-02930-1_13772

9. Esparza, J., Kret́ınský, J., Raskin, J., Sickert, S.: From LTL and limit-deterministic773

büchi automata to deterministic parity automata. In: Legay, A., Margaria, T.774

(eds.) Tools and Algorithms for the Construction and Analysis of Systems -775

23rd International Conference, TACAS 2017, Held as Part of the European Joint776

Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-777

den, April 22-29, 2017, Proceedings, Part I. Lecture Notes in Computer Sci-778

ence, vol. 10205, pp. 426–442 (2017). https://doi.org/10.1007/978-3-662-54577-5 -779

25, https://doi.org/10.1007/978-3-662-54577-5_25780

10. Farzan, A., Chen, Y., Clarke, E.M., Tsay, Y., Wang, B.: Extending automated781

compositional verification to the full class of omega-regular languages. In: Ra-782

makrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and783

Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of784

the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,785

Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-786

puter Science, vol. 4963, pp. 2–17. Springer (2008). https://doi.org/10.1007/978-787

3-540-78800-3 2, https://doi.org/10.1007/978-3-540-78800-3_2788

11. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic w automata vis-a-vis de-789

terministic buchi automata. In: Du, D., Zhang, X. (eds.) Algorithms and Com-790

putation, 5th International Symposium, ISAAC ’94, Beijing, P. R. China, Au-791

gust 25-27, 1994, Proceedings. Lecture Notes in Computer Science, vol. 834,792

pp. 378–386. Springer (1994). https://doi.org/10.1007/3-540-58325-4 202, https:793

//doi.org/10.1007/3-540-58325-4_202794

12. Kurshan, R.P.: Complementing deterministic büchi automata in polynomial795

time. J. Comput. Syst. Sci. 35(1), 59–71 (1987). https://doi.org/10.1016/0022-796

0000(87)90036-5, https://doi.org/10.1016/0022-0000(87)90036-5797

https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1016/0022-0000(87)90036-5
https://doi.org/10.1016/0022-0000(87)90036-5

22 Yong Li, Sven Schewe, Qiyi Tang

13. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for büchi automata798

based on family of dfas and classification trees. Inf. Comput. 281, 104678 (2021).799

https://doi.org/10.1016/j.ic.2020.104678, https://doi.org/10.1016/j.ic.2020.800

104678801

14. Li, Y., Sun, X., Turrini, A., Chen, Y., Xu, J.: ROLL 1.0: \omega -regular802

language learning library. In: Vojnar, T., Zhang, L. (eds.) Tools and Algo-803

rithms for the Construction and Analysis of Systems - 25th International Con-804

ference, TACAS 2019, Held as Part of the European Joint Conferences on The-805

ory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11,806

2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp.807

365–371. Springer (2019). https://doi.org/10.1007/978-3-030-17462-0 23, https:808

//doi.org/10.1007/978-3-030-17462-0_23809

15. Li, Y., Turrini, A., Feng, W., Vardi, M.Y., Zhang, L.: Divide-and-conquer deter-810

minization of büchi automata based on SCC decomposition. In: Shoham, S., Vizel,811

Y. (eds.) Computer Aided Verification - 34th International Conference, CAV 2022,812

Haifa, Israel, August 7-10, 2022, Proceedings, Part II. Lecture Notes in Computer813

Science, vol. 13372, pp. 152–173. Springer (2022). https://doi.org/10.1007/978-3-814

031-13188-2 8, https://doi.org/10.1007/978-3-031-13188-2_8815

16. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Com-816

put. 118(2), 316–326 (1995). https://doi.org/10.1006/inco.1995.1070, https://817

doi.org/10.1006/inco.1995.1070818

17. Maler, O., Staiger, L.: On syntactic congruences for omega-languages. Theor. Com-819

put. Sci. 183(1), 93–112 (1997). https://doi.org/10.1016/S0304-3975(96)00312-X,820

https://doi.org/10.1016/S0304-3975(96)00312-X821

18. Michel, M.: Complementation is more difficult with automata on infinite words.822

CNET, Paris 15 (1988)823

19. Myhill, J.: Finite automata and the representation of events. In: Technical Report824

WADD TR-57-624. p. 112–137 (1957)825

20. Nerode, A.: Linear automaton transformations. In: American Mathematical Soci-826

ety. p. 541–544 (1958)827

21. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines.828

IEEE Trans. Computers 22(12), 1099–1102 (1973). https://doi.org/10.1109/T-829

C.1973.223655, https://doi.org/10.1109/T-C.1973.223655830

22. Safra, S.: On the complexity of omega-automata. In: 29th Annual Sym-831

posium on Foundations of Computer Science, White Plains, New York,832

USA, 24-26 October 1988. pp. 319–327. IEEE Computer Society (1988).833

https://doi.org/10.1109/SFCS.1988.21948, https://doi.org/10.1109/SFCS.834

1988.21948835

23. Schewe, S.: Tighter bounds for the determinisation of büchi automata. In: de Al-836

faro, L. (ed.) Foundations of Software Science and Computational Structures,837

12th International Conference, FOSSACS 2009, Held as Part of the Joint Eu-838

ropean Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,839

March 22-29, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5504, pp.840

167–181. Springer (2009). https://doi.org/10.1007/978-3-642-00596-1 13, https:841

//doi.org/10.1007/978-3-642-00596-1_13842

24. Schewe, S.: Beyond hyper-minimisation—minimising dbas and dpas is np-843

complete. In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Confer-844

ence on Foundations of Software Technology and Theoretical Computer845

Science, FSTTCS 2010, December 15-18, 2010, Chennai, India. LIPIcs,846

vol. 8, pp. 400–411. Schloss Dagstuhl - Leibniz-Zentrum für Informatik847

https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-031-13188-2_8
https://doi.org/10.1007/978-3-031-13188-2_8
https://doi.org/10.1007/978-3-031-13188-2_8
https://doi.org/10.1007/978-3-031-13188-2_8
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1016/S0304-3975(96)00312-X
https://doi.org/10.1016/S0304-3975(96)00312-X
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-00596-1_13

Novel Families of Finite Automata 23

(2010). https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400, https://doi.org/10.848

4230/LIPIcs.FSTTCS.2010.400849

25. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program850

verification (preliminary report). In: Proceedings of the Symposium on Logic in851

Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18, 1986.852

pp. 332–344. IEEE Computer Society (1986)853

26. Wilke, T., Schewe, S.: ω-automata. In: Pin, J. (ed.) Handbook of Automata Theory,854

pp. 189–234. European Mathematical Society Publishing House, Zürich, Switzer-855

land (2021). https://doi.org/10.4171/Automata-1/6, https://doi.org/10.4171/856

Automata-1/6857

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4171/Automata-1/6
https://doi.org/10.4171/Automata-1/6
https://doi.org/10.4171/Automata-1/6
https://doi.org/10.4171/Automata-1/6

24 Yong Li, Sven Schewe, Qiyi Tang

A Proof of Lemma 3858

Lemma 3. Let Σn = {0, 1, · · · , n}. There exists an ω-regular language Ln over859

Σn such that its limit FDFA has Θ(n) states, while both its syntactic and recur-860

rent FDFAs have Θ(n2) states.861

Proof. The language Ln is given as its DBA B = (Q,Σn, q0, δ, Γ) depicted in862

Figure 2. First, we show that the index of ∽Ln
is n+2. In fact, the leading DFA863

induced by ∽Ln
is the exactly the TS of B. For every two words u1, u2 ∈ Σ∗, if864

u1 ̸∽Ln
u2, then there exists a word w ∈ Σω such that u1·w ∈ Ln ⇐⇒ u2·w ∈ Ln865

does not hold. That is, u−1
1 ·Ln ̸= u−1

2 ·Ln where u−1 ·Ln = {w ∈ Σω : u·w ∈ Ln}866

for a word u ∈ Σ∗. Let Lq = L(Bq). For every pair of different states qi, qj ∈ Q867

with i ̸= j, obviously Lqi ̸= Lqj since Lqi contains an infinite word iω, while Lqj868

does not contain such a word. So, if B(u1) ̸= B(u2), then u−1
1 · Ln ̸= u−1

2 · Ln.869

Hence, | ∽Ln | ≥ n + 2. It is trivial to see that | ∽Ln | ≤ n + 2 since the870

index of ∽Ln
is always not greater than the number of states in a deterministic871

ω-automaton accepting Ln. Therefore, | ∽Ln
| = n+ 2.872

Now we fix a word u and consider the index of ≈u
L. Let x ∈ Σ∗. Obviously,873

if q⊥ = B(u), then for all v ∈ Σ∗, we have u · x · v ∽Ln
u but u · (x · v)ω /∈ Ln.874

Hence, | ≈u
L | = 1. Now let qi = B(u) with 0 ≤ i ≤ n. For all v ∈ Σ∗, if875

u · x · v ∽Ln
u holds, it must be the case that u · (x · v)ω ∈ Ln except that876

x · v = ϵ. Hence, | ≈u
L | = 2. It follows that the limit FDFA of Ln has exactly877

2× (n+ 1) + 1 + n+ 2 ∈ Θ(n) states.878

Now we consider the index of ≈u
R for a fixed u ∈ Σ∗. Similarly, when q⊥ =879

B(u), | ≈u
R | = 1 since for all v ∈ Σ∗, we have u · x · v ∽Ln u ∧ u · (x · v)ω /∈ Ln880

hold. Now we consider that qk = B(u) with 0 ≤ k ≤ n. Let x1, x2 ∈ Σ∗. First,881

assume that B(u · x1) ̸= B(u · x2). W.l.o.g., let qj = B(u · x2) with 0 ≤ j ≤ n882

and let qi = B(u · x1) with either i < j or qi = q⊥. We can easily construct883

a finite word v such that qk = B(u) = B(u · x2 · v), i.e., u · x2 · v ∽Ln
u, and884

u · (x2 · v)ω ∈ Ln. For example, we can let v = (j + 1) · · ·n · 0 · · · k if j < k ≤ n.885

Hence, u ·x2 · v ∽Ln u∧u · (x2 · v)ω ∈ Ln holds. On the contrary, it is easy to see886

that q⊥ = B(u ·x1 ·v) = δ(qi, j+1) since either j+1 > i+1 or qi = q⊥. In other887

words, we have u · x1 · v ̸∽Ln
u ∧ u · (x1 · v)ω /∈ Ln holds. By definition of ≈u

R,888

x1 ̸≈u
R x2. Hence, | ≈u

R | ≥ n + 2. Next, we assume that B(u · x1) = B(u · x2).889

For a word v ∈ Σ∗, it is easy to see that u · x1 · v ∽Ln
u ⇐⇒ u · x2 · v ∽Ln

u.890

Moreover, since u · x1 · v ∽Ln u implies u · (x1 · v)ω ∈ Ln, we thus have that891

u · x1 · v ∽Ln u ∧ u · (x1 · v)ω ∈ Ln ⇐⇒ u · x2 · v ∽Ln u ∧ u · (x2 · v)ω ∈ Ln.892

In other words, x1 ≈u
R x2, which implies that | ≈u

R | ≤ n + 2. Hence | ≈u
R | =893

n + 2 when B(u) ̸= q⊥. It follows that the recurrent FDFA of Ln has exactly894

(n+ 2)× (n+ 1) + 1 + (n+ 2) ∈ Θ(n2) states.895

For the syntactic FDFA, since ≈u
S refines ≈u

R [3], then | ≈u
S | ≥ | ≈u

R | for all896

u ∈ Σ∗. The upper bound is proved similarly as for recurrent FDFAs. Therefore,897

the syntactic FDFA of Ln also has Θ(n2) states.898

This completes the proof of the lemma.899

Novel Families of Finite Automata 25

B Translations from FDFAs to NBAs900

It is possible to transform a canonical FDFA F of L to an equivalent NBA901

A [2, 7, 13].902

In the following, we only berifly describe how we construct a NBA from an903

FDFA. Angluin and Fisman proved in [2] that every saturated FDFA F can be904

polynomially translated to an equivalent NBA A[F]. In fact, the requirement for905

F being saturated is somewhat strong; we only need F to be almost saturated.906

The translation given in [2, 7, 13] works as follows. Let F = (M, {N q}) be907

an almost saturated FDFA, where M = (Σ,Q, ι, δ), and for each state q ∈ Q,908

there is a progress DFA N q = (Σ,Qq, ιq, δq, Fq). Recall that (A)sf denotes the909

DFA A where s is the initial state and f is the sole final state. By Definition 3,910

we have that UP(F) = {α ∈ Σω : α is accepted by F}, where α is accepted if911

there is a decomposition (u, v) of α, such that M(u) = M(uv), and N q(v) ∈ Fq912

where q = M(u). This implies that a word α ∈ UP(F) can be decomposed into913

two parts u and v, such that u is accepted by the DFA Mι
q and v by the DFA914

(N q)
ιq
f where f = N q(v). Hence, UP(F) =

⋃
q∈Q,f∈Fq

L∗(M
ι
q) · N(q,f), where915

N(q,f) = {vω ∈ Σω : v ∈ Σ+, q = Mq
q(v), v ∈ L∗((N q)

ιq
q)} is the set of all916

infinite repetitions of the finite words v accepted by (N q)
ιq
f .917

It is hard to construct a NBA to accept exactly N(q,f). However, it suffices to918

under approximate N(q,f) with the DFA P(q,f) = Mq
q × (N q)

ιq
q × (N q)ff , where919

× stands for the intersection product between DFAs. On one hand, the DFA920

Mq
q×(N q)

ιq
q makes sure that for a word v ∈ L∗(Mq

q×(N q)
ιq
q) and u ∈ L∗(Mι

q), it921

follows that q = M(u) = M(uv). On the other hand, (N q)ff ensures that v, vk ∈922

L∗((N q)
ιq
f) for all k ≥ 1. One can construct a NBA A[F] =

⋃
q∈Q,f∈Fq

L∗(Mι
q) ·923

Pω
(q,f) to under approximate UP(F) [13].924

It is worth noting that we can construct easily a DBA that accepts Pω
(q,f)925

from the DFA P(q,f) by redirecting all incoming transitions of final states to the926

initial state and mark them as Γ -transitions. This way, we obtain a LDBA S[F]927

that recognizes UP(F), which allows easier determinization algorithm [9, 15].928

This construction of LDBAs is much easier than the one proposed in [13] where929

the acceptance condition is defined on states, rather than transitions.930

Since the four types of canonical FDFAs are all saturated, Corollary 5 im-931

mediately follows.932

Corollary 5. Let L be an ω-regular language. Then its periodic, syntactic, re-933

current and limit FDFAs are almost saturated.934

Let n is the number of states in the leading DFA M and k is the largest935

number of states of progress DFAs of F . For each pair q ∈ Q, f ∈ Fq, the936

constructed NBA/DBA accepting P(q,f) has nk2 states, and there are at most937

nk such pairs; So, all four types of canonical FDFAs can be polynomial translated938

to equivalent NBA/LDBAs with O(n2k3) states.939

For the variant limit FDFA FB , there is at most one final state in each940

progress DFA. So, the equivalent NBA for FB has O(n2k2) states.941

26 Yong Li, Sven Schewe, Qiyi Tang

C Proof of Lemma 4942

Lemma 4. Let L be a DBA-recognizable language and943

FL=(M, {N u
L}[u]∽∈Σ∗/∽

) be the limit FDFA of L. Then, for each progress944

DFA N u
L with L∗(N u

L) ̸= ∅, there must exist a final state x̃ ∈ Fu such that945

[x̃]≈u
L
= {x ∈ Σ+ : ∀v ∈ Σ∗. u · (x · v) ∽ u =⇒ u · (x · v)ω ∈ L}.946

Proof. The proof is inspired and adapted from the proof of [5, Lemma 10].947

We let D = (T , Γ) be a DBA of L, where T = (Q,Σ, q0, δ) is the TS of D948

and Γ is the set of accepting transitions. We assume that D is complete in the949

sense that for every state q ∈ Q and σ ∈ Σ, we have that δ(q, σ) ∈ Q.950

For two different states q1, q2 ∈ Q, we define an equivalence relation ∽D951

where q1 ∽D q2 if and only if L(Dq1) = L(Dq2) where Dq is the DBA obtained952

from D by setting the initial state to q ∈ Q. Let Uq = {u ∈ Σ∗ : δ(q0, u) = q}. Let953

U[q]∽D
= ∪p∈[q]∽D

Up where [q]∽D is the equivalence class of ∽D that q belongs954

to. Clearly, U[q]∽D
is an equivalence class [u]∽ of ∽ defined with respect to L955

where u ∈ U[q]∽D
.956

Now consider the periodic finite words for each state q ∈ Q. Let Vq = {x ∈957

Σ+ : ∀v ∈ Σ∗. if q
x·v−−→ q. (x · v)ω ∈ L(Dq)}. That is, a word x belongs to Vq958

iff for every v ∈ Σ∗, if D takes a round trip from q back to itself over x · v, the959

run must go through a Γ -transition. We first prove that Vq is regular. We can960

construct the DFA Dq of Vq from the TS T by first removing all Γ -transitions in961

T , resulting a TS T ′, and then collect all the transitions (p, σ, q) in a set β such962

that p and q are in the different SCCs of the reduced TS T ′. We then define963

Dq = (Q ∪ {⊤}, Σ, q, δD, F = {⊤}) where (1) for a state p ∈ Q, σ ∈ Σ and964

q = δ(p, σ), δD(p, σ) = q if (p, σ, q) /∈ Γ ∪ β and otherwise δD(p, σ) = ⊤; and (2)965

δD(⊤, σ) = ⊤ for all σ ∈ Σ.966

Next we prove that L∗(Dq) = Vq. First, let x ∈ L∗(Dq) and we want to prove967

that x ∈ Vq. Obviously, the last transition of D over x from q will be either a968

Γ -transition or a transition jumping between two SCCs in the reduced T ′. If it969

is a Γ -transition, obviously, we have that for all v ∈ Σ∗, if q
x·v−−→ q, then it must970

visit a Γ -transition. Hence, (xv)ω ∈ L(Dq). If it is a transition jumping between971

different SCCs, it would be the case that either D does not go back to q over xv972

or it must be visiting a Γ -transition, since in the reduced TS T ′, they can not973

reach each other. Therefore, x ∈ Vq. Now let x ∈ Vq and we want to prove that974

x ∈ L∗(Dq). Let p = δ(q, x) in D. If p and q lie in two different SCCs of D, then975

it is impossible to find a v ∈ Σ∗ such that p
v−→ q, otherwise, p and q will belong976

to the same SCC of D. In this case, there will be a transition between different977

SCCs along the way from q to p over xv, which of courses also separates these978

two SCCs in the reduced TS T ′. Thus, there will be a prefix of x accepted by Dq,979

so x is also accepted by Dq as ⊤ is a sink final state. Now assume that p and q980

are in the same SCC of D. At state p, for each v ∈ Σ∗ such that q
x−→ p

v−→ q, we981

have that (x · v)ω ∈ L(Dq). There must be some Γ -transition visited along the982

way from q back to itself. It follows that in the reduced TS T ′, it is impossible983

to reach p from q. In other words, q and p are not in the same SCC of T ′. So, the984

run from q to p over x must visit some transition jumping between two different985

Novel Families of Finite Automata 27

SCCs. Again, this means that there will be a prefix of x accepted by Dq. So x986

will also be accepted by Dq. Therefore, Vq is a regular language.987

Now, for an equivalence class [q]∽D , we define V[q]∽D
=

⋂
p∈[q]∽D

Vp. So,988

V[q]∽D
is also a regular language. Let u be a word in U[q]∽D

.989

Let Vu = {x ∈ Σ+ : ∀v ∈ Σ∗. u · (x · v) ∽ u =⇒ u · (x · v)ω ∈ L}. Next, we990

prove that Vu ≡ V[q]∽D
. Let p = δ(q0, u).991

Let x ∈ V[q]∽D
and we want to prove that x ∈ Vu. That is, we need to prove992

that for all v ∈ Σ∗, we have that u · (x · v) ∽ u =⇒ u · (x · v)ω ∈ L. First, if993

u · (x · v) ̸∽ u, then x ∈ Vu holds trivially. Otherwise we have that u · x · v ∽ u,994

which implies that δ(q0, u ·(x ·v)k) ∽D δ(q0, u) for all k ≥ 0. Thus, we will have a995

run ρ = q0
u−→ q1

x·v−−→ · · · of D over u · (xv)ω where qi ∈ [q]∽D for all i > 0. There996

must be some state q occurs for an inifinite set of indices I = {i ∈ N : q = qi}.997

For each qi ∈ [q]∽D , we have that x ∈ Vqi . First, x ∈ Vp for all states p ∈ [q]∽D ,998

so for every two pairs of integers i, j ∈ I with i < j, there must be a Γ -transition999

along the way from qi to qj . It follows that u · (x · v)ω ∈ L(Dq) holds. Hence,1000

x ∈ Vu holds as well, since u · x · v ∽ u =⇒ u · (x · v)ω ∈ L holds for all v ∈ Σ∗.1001

Now assume that x /∈ V[q]∽D
and we want to prove that x /∈ Vu holds. Assume1002

by contradiction that x ∈ Vu. Since x does not belong to V[q]∽D
, then there exists1003

a state r ∈ [q]∽D such that x /∈ Vr. That is, there exists a word v ∈ Σ∗ such that1004

r
x·v−−→ r and (x·v)ω /∈ L(Dr). Since p ∽D r, i.e., L(Dp) = L(Dr), (x·v)ω /∈ L(Dp)1005

as well. It then follows that u · (x · v) ∽ u and u · (x · v)ω /∈ L, which contradicts1006

that x ∈ Vu. Therefore, x /∈ Vu.1007

Hence, Vu = V[q]∽D
. Now we show that Vu is an equivalence class of ≈u

L as1008

follows. On one hand, for every two different words x1, x2 ∈ Vu, we have that1009

x1 ≈u
L x2, which is obvious by the definition of Vu. On the other hand, it is easy1010

to see that x′ ̸≈u
L x for all x′ /∈ Vu and x ∈ Vu because there will exists some1011

v ∈ Σ∗ such that u · x′ · v ∽ u but u · (x′ · v)ω /∈ L. Hence, Vu is indeed an1012

equivalence class of ≈u
L. Obviously, Vu ⊆ L∗(N u), as we can let v = ϵ, so for1013

every word x ∈ Vu, we have that u · x ∽ u =⇒ u · xω ∈ L. Let x̃ = N u(x) for1014

a word x ∈ Vu. It follows that x̃ is a final state of N u and we have [x̃]≈u
L
= Vu.1015

Thus, we complete the proof of the lemma.1016

1017

D Proof of Theorem 61018

Theorem 6. Let L be an ω-regular language and FL=(M[∽], {N [≈u1019

]}[u]∽∈Σ∗/∽
) be the limit FDFA of L s.t. ≈u∈ RC(≈u

N) with finite index for1020

all u. Then (1) FL has a finite number of states, (2) UP(FL) = UP(L), and (3)1021

FL is saturated.1022

Proof. The first claim follows from the restriction to finite indices in the defini-1023

tion (we have seen that they exist, and that we can, e.g., choose limit RC).1024

To show UP(FL) ⊆ UP(L), assume that w ∈ UP(FL). By Definition 3, a1025

UP-word w is accepted by FL if there exists a decomposition (u, v) of w such1026

that M(u) = M(u·v) (equivalently, u·v ∽ u) and v ∈ L∗(N ũ) where ũ = M(u).1027

28 Yong Li, Sven Schewe, Qiyi Tang

Here ũ is the representative word for the equivalence class [u]∽. Similarly, let1028

ṽ = N ũ(v). By Definition 12, we have ũ · ṽ ∽ ũ =⇒ ũ · ṽω ∈ L holds as ṽ is a1029

final state of N ũ. Since v ≈ũ ṽ (i.e., N ũ(v) = N ũ(ṽ)), ũ · v ∽ ũ =⇒ ũ · vω ∈ L1030

holds as well. It follows that u · v ∽ u =⇒ u · vω ∈ L since u ∽ ũ and1031

u · v ∽ ũ · v (equivalently, M(u · v) = M(ũ · v)). Together with the assumption1032

that M(u · v) = M(u) (i.e, u ∽ u · v), we then have that u · vω ∈ L holds. So,1033

UP(FL) ⊆ UP(L) also holds.1034

To show that UP(L) ⊆ UP(FL) holds, let w ∈ UP(L). For a UP-word w ∈ L,1035

we can find a normalized decomposition (u, v) of w such that w = u · vω and1036

u · v ∽ u (i.e., M(u) = M(u · v)), since the index of ∽ is finite (cf. [3] for more1037

details). Let ũ = M(u) and ṽ = N ũ(v). Our goal is to prove that ṽ is a final1038

state of N ũ. Since u ∽ ũ and u ·vω ∈ L, then ũ ·vω ∈ L holds. Moreover, ũ ·v ∽ ũ1039

holds as well because ũ = M(ũ) = M(u) = M(ũ · v) = M(u · v). (Recall that1040

M is deterministic.) We now have that v ∈ Cu, so that Cũ ∩Σ∗/≈u
N

is good (as1041

u · vω ∈ L). We also have that ṽ ≈u
N v, so that [ṽ]≈u

N
is accepting. Hence, ṽ is1042

a final state, and (u, v) therefore accepted by FL, i.e., w ∈ UP(FL). It follows1043

that UP(L) ⊆ UP(FL).1044

Now we prove that FL is saturated. Let w be a UP-word. Let (u, v) and (x, y)1045

be two normalized decompositions of w with respect to M (or, equivalently, to1046

∽). We have seen that (u, v) is accepted by FL iff u ·vω = x ·yω ∈ UP(L), which1047

is the case iff (x, y) is accepted by FL with the same argument.1048

E Active learning of limit FDFAs1049

First, there are two roles, namely the learner and an oracle in the active learning1050

framework [1]. The task of the learner is to learn an automaton representation1051

of an unknown language L from the oracle. The learner can ask two types of1052

queries about L, which will be answered by the oracle. A membership query is1053

about whether a word w is in L; an equivalence query is to ask whether a given1054

automaton recognizes the language L. If the oracle returns positive answer to1055

equivalence query, then the learner has completed the task and output the correct1056

automaton; otherwise, the learner will receive a counterexample which will then1057

be used to refine current hypothesis.1058

Angluin and Fisman proposed a learning framework in [3] to learn the clas-1059

sical three types of FDFAs. We show that our limit FDFA can easily fit into1060

this learning framework. The learner Lω is described in the following frame-1061

work. We refer to [3] for details about the learning framework. We mainly use1062

the notations and description from [3] in the following. As usual, the framework1063

makes use of the notion of observation tables. An observation table is a tuple1064

T = (S, S̃, E, T) where S is a prefix-closed set of finite words, E is a set of1065

experiments trying to distinguish the strings in S, and T : S×E → D stores the1066

element (membership query results) in entry T (s, e) an element in some domain1067

D, where s ∈ S and e ∈ E. For our limit FDFA, D is purely a Boolean values1068

{⊤,⊥}. We usually determine when two strings s1, s2 ∈ S should be considered1069

not equivalent depending on the RC we are using. The component S̃ ⊆ S is1070

Novel Families of Finite Automata 29

the subset considered as representatives of the equivalence classes, i.e., the state1071

names of the constructed DFA. A table is said to be closed if S is prefix closed1072

and for every s ∈ S̃ and σ ∈ Σ, we have sσ ∈ S. The procedure CloseTable uses1073

two sub-procedures ENT and DFR to make a given observation closed. Here ENT1074

is used to fill in the entries of the table by means of asking membership queries.1075

The procedure DFR is used to determine which row (words) of the table should1076

be distinguished. A learning procedure usually begins with create an initial ob-1077

servation table by asking membership queries, close the table with ENT and DFR1078

procedures, and then construct an hypothesis automaton for asking equivalence1079

query. The learner should be able to use the counterexample to the equivalence1080

query to find new experiments for discovering new equivalence classes.1081

We now give the subprocedures for learning our limit FDFAs.1082

Algorithm 1: The learner Lω in [3]

Initialize leading table T = (S, S̃, E, T) with
S = S̃ = {ϵ}, E = {(ϵ, σ) : σ ∈ Σ};

CloseTable(T , ENT1, DFR1) and let M = Aut1(T);

forall u ∈ S̃ do

Initialize Tu = (Su, S̃u, Eu, Tu), with Su = S̃u = Eu = {ϵ};
CloseTable(Tu, ENT

u
2 , DFR

u
2) and let Au = Aut2(Tu);

while true do
Let (a, u, v) be the oracle’s response for equivalence query H = (M, {Au});
if a = “yes” then

break;

Let (x, y) be the normalized decomposition of (u, v) w.r.t M;
Let x̃ = M(x);
if MQ(x, y) ̸= MQ(x̃, y) then

E = E ∪ FindDistinguishingExperiment(x, y);
CloseTable(T , ENT1, DFR1) and let M = Aut1(T);

else
Ex̃ = Ex̃ ∪ FindDistinguishingExperiment(x̃, y);

CloseTable(Tx̃, ENT
x̃
2 , DFR

x̃
2) and let Ax̃ = Aut2(Tx̃);

We let MQ(x, y) be the result of the membership query ω-word x · yω to the1083

oracle. The procedures ENT1 and DFR1 and Aut1 are the same for all four types1084

of FDFAs. More precisely, for u, x, y ∈ Σ∗, ENT1(u, (x, y)) = MQ(u · x, y); for1085

two finite row words u1, u2 ∈ S, DFR1(u1, u2) = ⊤ iff there exists (x, y) ∈ E1086

such that T (u1, (x, y)) ̸= T (u2, (x, y)). That is, we can use x · yω to distin-1087

guish the finite words u1 and u2 according to ∽. The procedure Aut1 is simply1088

to construct the leading DFA without final states from T , by Definition 11.1089

When learning our limit FDFAs, for u, x, v ∈ Σ∗, we define ENTu2 (x, v) = ⊤1090

if M(ux · v) ̸= M(u) or MQ(u, x · v) = ⊤ holds, corresponding to whether1091

30 Yong Li, Sven Schewe, Qiyi Tang

ux · v ∽ u =⇒ u · (xv)ω ∈ L holds in Definition 9; for two finite row1092

words, x1, x2 ∈ Su, DFR
u
2 (x1, x2) returns true if there exists v ∈ E such that1093

Tu(x1, v) ̸= Tu(x2, v). The procedure Autu(Tu) not only constructs the TS but1094

also set a state x as accepting if Tu(x, ϵ) = ⊤. Note that here Tu(x, v) stores the1095

result of whether (M(u · xv) = M(u)) =⇒ MQ(u, xv).1096

To be consistent with the notations in [3], we also denote by ρ[i..k] the1097

subsequence of ρ starting at the i-th element and ending at the k-th element1098

(inclusively) when i ≤ k, and the empty sequence ϵ when i > k. However, the1099

first element will be ρ[1] instead of ρ[0] in the main content.1100

Now we provide more details in learning our limit FDFAs and also prove that1101

the learner Lω will make progress in every iteration. We assume that now we1102

have received the counterexample (u, v) in the algorithm to current hypothesis1103

and we prove that our limit FDFA learner is able to make use of (u, v) to refine1104

current FDFA.1105

Let (x, y) be the normalized decomposition of the counterexample u ·vω with1106

respect to M and let x̃ = M(x). If MQ(x, y) ̸= MQ(x̃, y), then we know that1107

x ̸∽ x̃. So, we can find an experiment as follows: let n = |x| and for 1 ≤ i ≤ n,1108

let si = M(x[1 · · · i]) be state/word that M arrives after reading the first i1109

letters of x. Recall that si is also the representative word of M(x[1 · · · i]). In1110

particular, s0 = M(ϵ) = ϵ and sn = M(x) = x̃. Thus, we can construct the1111

sequence, MQ(s0 ·x[1 · · ·n], y), MQ(s1 ·x[2 · · ·n], y), MQ(s2 ·x[3 · · ·n], y), · · · , MQ(sn ·1112

x[n+ 1 · · ·n], y). Obviously, this sequence has different results for the first and1113

last elements since MQ(s0 · x[1 · · ·n], y) ̸= MQ(sn, y), where sn = x̃.1114

Therefore, there must exist the smallest j ∈ [1 · · ·n] such that MQ(sj−1 ·1115

x[j · · ·n], y) ̸= MQ(sj · x[j + 1 · · ·n], y), It follows that we can use the experiment1116

e = (u[j + 1 · · ·n], v) to distinguish sj−1 · x[j] and sj .1117

Otherwise if MQ(x, y) = MQ(x̃, y), we need to similarly refine current Ax̃.1118

Similarly, we let n = |y| and si = Ax̃(y[1 · · · i]). We also consider a sequence1119

(m0, c0), · · · , (mn, cn) where mi = ⊤ iff x̃ = M(x̃ · si · y[i+ 1 · · ·n]) and ci = ⊤1120

iff x̃·(si·y[i+ 1 · · ·n])ω ∈ L. First, we know thatm0 = ⊤ andmn = ⊤ since (x, y)1121

is a normalized decomposition of u · vω, i.e., x̃ = M(x) = M(x · y) = M(x̃ · y).1122

Since (x, y) is a counterexample to current hypothesis H, we know that either1123

the normalized decomposition (x, y) is not accepted by H and xyω ∈ L or (x, y)1124

is accepted by H and xyω /∈ L. Therefore, one out of (m0, c0) and (mn, cn) must1125

be (⊤,⊤) and the other is not. That is, either m0 =⇒ c0 or mn =⇒ c01126

holds. There must be the smallest j ∈ [1 · · ·n] such that mj−1 =⇒ cj−11127

and mj =⇒ cj differs. W.l.o.g., we let mj−1 =⇒ cj−1 hold. In this case,1128

we can set the experiment e = y[j + 1 · · ·n] to distinguish sj−1 · y[j] and sj1129

since we have x̃ = M(x̃ · sj−1 · y[j · · ·n]) =⇒ x̃ · (sj−1 · y[j · n])ω ∈ L but1130

x̃ = M(x̃ · sj · y[j + 1 · · ·n]) =⇒ x̃ · (sj · y[j + 1 · · ·n])ω ∈ L does not hold.1131

We can see that every time we received a counterexample from the oracle,1132

either the leading DFA M or the progress DFA Ax̃ will add at least state. Since1133

the limit FDFA FL has finite number of states, H will eventually be FL in the1134

worst case.1135

Novel Families of Finite Automata 31

Corollary 6. The limit FDFAs can be learned with membership and equivalence1136

queries in time in polynomial in the size of canonical limit FDFAs.1137

	A novel family of finite automata for recognizing and learning -regular languages

