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Abstract. Complementation of nondeterministic Büchi automata (BAs) is an
important problem in automata theory with numerous applications in formal veri-
fication, such as termination analysis of programs, model checking, or in decision
procedures of some logics. We build on ideas from a recent work on BA deter-
minization by Li et al. and propose a new modular algorithm for BA complemen-
tation. Our algorithm allows to combine several BA complementation procedures
together, with one procedure for a subset of the BA’s strongly connected compo-
nents (SCCs). In this way, one can exploit the structure of particular SCCs (such
as when they are inherently weak or deterministic) and use more efficient special-
ized algorithms, regardless of the structure of the whole BA. We give a general
framework into which partial complementation procedures can be plugged in, and
its instantiation with several algorithms. The framework can, in general, produce a
complement with an Emerson-Lei acceptance condition, which can often be more
compact. Using the algorithm, we were able to establish an exponentially better
new upper bound of O(4𝑛) for complementation of the recently introduced class
of elevator automata. We implemented the algorithm in a prototype and performed
a comprehensive set of experiments on a large set of benchmarks, showing that
our framework complements well the state of the art and that it can serve as a basis
for future efficient BA complementation and inclusion checking algorithms.

1 Introduction
Nondeterministic Büchi automata (BAs) [8] are an elegant and conceptually simple
framework to model infinite behaviors of systems and the properties they are expected
to satisfy. BAs are widely used in many important verification tasks, such as termination
analysis of programs [30], model checking [54], or as the underlying formal model of
decision procedures for some logics (such as S1S [8] or a fragment of the first-order
logic over Sturmian words [31]). Many of these applications require to perform comple-
mentation of BAs: For instance, in termination analysis of programs within Ultimate
Automizer [30], complementation is used to keep track of the set of paths whose ter-
mination still needs to be proved. On the other hand, in model checking5 and decision
procedures of logics, complement is usually used to implement negation and quantifier

5 Here, we consider model checking w.r.t. a specification given in some more expressive logic,
such as S1S [8], QPTL [50], or HyperLTL [12], rather than LTL [44], where negation is simple.
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alternation. Complementation is often the most difficult automata operation performed
here; its worst-case state complexity is O((0.76𝑛)𝑛) [2, 48] (which is tight [55]).

In these applications, efficiency of the complementation often determines the overall
efficiency (or even feasibility) of the top-level application. For instance, the success of
Ultimate Automizer in the Termination category of the International Competition
on Software Verification (SV-COMP) [51] is to a large degree due to an efficient BA
complementation algorithm [6,11] tailored for BAs with a special structure that it often
encounters (as of the time of writing, it has won 6 gold medals in the years 2017–2022
and two silver medals in 2015 and 2016). The special structure in this case are the so-
called semi-deterministic BAs (SDBAs), BAs consisting of two parts: (i) an initial part
without accepting states/transitions and (ii) a deterministic part containing accepting
states/transitions that cannot transition into the first part.

Complementation of SDBAs using one from the family of the so-called NCSB algo-
rithms [5,6,11,28] has the worst-case complexity O(4𝑛) (and usually also works much
better in practice than general BA complementation procedures). Similarly, there are
efficient complementation procedures for other subclasses of BAs, e.g., (i) determinis-
tic BAs (DBAs) can be complemented into BAs with 2𝑛 states [35] (or into co-Büchi
automata with 𝑛+ 1 states) or (ii) inherently weak BAs (BAs where in each strongly con-
nected component (SCC), either all cycles are accepting or all cycles are rejecting) can be
complemented into DBAs with O(3𝑛) states using the Miyano-Hayashi algorithm [42].

For a long time, there has been no efficient algorithm for complementation of BAs
that are highly structured but do not fall into one of the categories above, e.g., BAs
containing inherently weak, deterministic, and some nondeterministic SCCs. For such
BAs, one needed to use a general complementation algorithm with the O((0.76𝑛)𝑛) (or
worse) complexity. To the best of our knowledge, only recently has there appeared works
that exploit the structure of BAs to obtain a more efficient complementation algorithm:
(i) The work of Havlena et al. [29], who introduce the class of elevator automata (BAs
with an arbitrary mixture of inherently weak and deterministic SCCs) and give a O(16𝑛)
algorithm for them. (ii) The work of Li et al. [37], who propose a BA determinization
procedure (into a deterministic Emerson-Lei automaton) that is based on decomposing
the input BA into SCCs and using a different determinization procedure for different
types of SCCs (inherently weak, deterministic, general) in a synchronous construction.

In this paper, we propose a new BA complementation algorithm inspired by [37],
where we exploit the fact that complementation is, in a sense, more relaxed than de-
terminization. In particular, we present a framework where one can plug-in different
partial complementation procedures fine-tuned for SCCs with a specific structure. The
procedures work only with the given SCCs, to some degree independently (thus reducing
the potential state space explosion) from the rest of the BA. Our top-level algorithm then
orchestrates runs of the different procedures in a synchronous manner (or completely
independently in the so-called postponed strategy), obtaining a resulting automaton with
potentially a more general acceptance condition (in general an Emerson-Lei condition),
which can help keeping the result small. If the procedures satisfy given correctness re-
quirements, our framework guarantees that its instantiation will also be correct. We also
propose its optimizations by, e.g., using round-robin to decrease the amount of nondeter-
minism, using a shared breakpoint to reduce the size and the number of colours for certain
class of partial algorithms, and generalize simulation-based pruning of macrostates.
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We provide a detailed description of partial complementation procedures for inher-
ently weak, deterministic, and initial deterministic SCCs, which we use to obtain a new
exponentially better upper bound of O(4𝑛) for the class of elevator automata (i.e., the
same upper bound as for its strict subclass of SDBAs). Furthermore, we also provide
two partial procedures for general SCCs based on determinization (from [37]) and the
rank-based construction. Using a prototype implementation, we then show our algorithm
complements well existing approaches and significantly improves the state of the art.

2 Preliminaries
We fix a finite non-empty alphabet Σ and the first infinite ordinal 𝜔. An (infinite)
word 𝑤 is a function 𝑤 : 𝜔 → Σ where the 𝑖-th symbol is denoted as 𝑤𝑖 . Sometimes,
we represent 𝑤 as an infinite sequence 𝑤 = 𝑤0𝑤1 . . . We denote the set of all infinite
words over Σ as Σ𝜔; an 𝜔-language is a subset of Σ𝜔 .
Emerson-Lei Acceptance Conditions. Given a set Γ = {0, . . . , 𝑘 −1} of 𝑘 colours (often
depicted as 0 , 1 , etc.), we define the set of Emerson-Lei acceptance conditions EL(Γ)
as the set of formulae constructed according to the following grammar:

𝛼 ::= Inf (𝑐) | Fin(𝑐) | (𝛼 ∧ 𝛼) | (𝛼 ∨ 𝛼) (1)
for 𝑐 ∈ Γ. The satisfaction relation |= for a set of colours 𝑀 ⊆ Γ and condition 𝛼 is
defined inductively as follows (for 𝑐 ∈ Γ):

𝑀 |= Fin(𝑐) iff 𝑐 ∉ 𝑀, 𝑀 |= 𝛼1 ∨ 𝛼2 iff 𝑀 |= 𝛼1 or 𝑀 |= 𝛼2,

𝑀 |= Inf (𝑐) iff 𝑐 ∈ 𝑀, 𝑀 |= 𝛼1 ∧ 𝛼2 iff 𝑀 |= 𝛼1 and 𝑀 |= 𝛼2.

Emerson-Lei Automata. A (nondeterministic transition-based6) Emerson-Lei automa-
ton (TELA) over Σ is a tuple A = (𝑄, 𝛿, 𝐼, Γ, p,Acc), where 𝑄 is a finite set of states,
𝛿 ⊆ 𝑄 × Σ × 𝑄 is a set of transitions7, 𝐼 ⊆ 𝑄 is the set of initial states, Γ is the set of
colours, p : 𝛿 → 2Γ is a colouring function of transitions, and Acc ∈ EL(Γ). We use
𝑝

𝑎→ 𝑞 to denote that (𝑝, 𝑎, 𝑞) ∈ 𝛿 and sometimes also treat 𝛿 as a function 𝛿 : 𝑄 ×Σ →
2𝑄. Moreover, we extend 𝛿 to sets of states 𝑃 ⊆ 𝑄 as 𝛿(𝑃, 𝑎) =

⋃
𝑝∈𝑃 𝛿(𝑝, 𝑎). We

use A[𝑞] for 𝑞 ∈ 𝑄 to denote the automaton A[𝑞] = (𝑄, 𝛿, {𝑞}, Γ, p,Acc), i.e., the
TELA obtained from A by setting 𝑞 as the only initial state. A is called determin-
istic if |𝐼 | ≤ 1 and |𝛿(𝑞, 𝑎) | ≤ 1 for each 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. If Γ = { 0 } and
Acc = Inf ( 0 ), we call A a Büchi automaton (BA) and denote it as A = (𝑄, 𝛿, 𝐼, 𝐹)
where 𝐹 is the set of all transitions coloured by 0 , i.e., 𝐹 = p−1 ({ 0 }). For a BA, we
use 𝛿𝐹 (𝑝, 𝑎) = {𝑞 ∈ 𝛿(𝑝, 𝑎) | p(𝑝 𝑎→ 𝑞) = { 0 }} (and extend the notation to sets of
states as for 𝛿). A BA A = (𝑄, 𝛿, 𝐼, 𝐹) is called semi-deterministic (SDBA) if for every
accepting transition (𝑝 𝑎→ 𝑞) ∈ 𝐹, the reachable part of A[𝑞] is deterministic.

A run of A from 𝑞 ∈ 𝑄 on an input word 𝑤 is an infinite sequence 𝜌 : 𝜔 → 𝑄 that
starts in 𝑞 and respects 𝛿, i.e., 𝜌0 = 𝑞 and ∀𝑖 ≥ 0: 𝜌𝑖

𝑤𝑖→ 𝜌𝑖+1 ∈ 𝛿. Let inf 𝛿 (𝜌) ⊆ 𝛿

denote the set of transitions occurring in 𝜌 infinitely often and infΓ (𝜌) =
⋃{p(𝑥) | 𝑥 ∈

6 We only consider transition-based acceptance in order to avoid cluttering the paper by al-
ways dealing with accepting states and accepting transitions. Extending our approach to
state/transition-based (or just state-based) automata is straightforward.

7 Note that some authors use a more general definition of TELAs with 𝛿 ⊆ 𝑄 × Σ × 2Γ ×𝑄; we
only use them as the output of our algorithm, where the simpler definition suffices.
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inf 𝛿 (𝜌)} be the set of infinitely often occurring colours. A run 𝜌 is accepting in A iff
infΓ (𝜌) |= Acc and the language of A, denoted as L(A), is defined as the set of words
𝑤 ∈ Σ𝜔 for which there exists an accepting run in A starting with some state in 𝐼.

Consider a BA A = (𝑄, 𝛿, 𝐼, 𝐹). For a set of states 𝑆 ⊆ 𝑄 we use A𝑆 to denote the
copy of A where accepting transitions only occur between states from 𝑆, i.e., the BA
A𝑆 = (𝑄, 𝛿, 𝐼, 𝐹 ∩ 𝛿 |𝑆) where 𝛿 |𝑆 = {𝑝 𝑎→ 𝑞 ∈ 𝛿 | 𝑝, 𝑞 ∈ 𝑆}. We say that a non-empty
set of states 𝐶 ⊆ 𝑄 is a strongly connected component (SCC) if every pair of states
of 𝐶 can reach each other and 𝐶 is a maximal such set. An SCC of A is trivial if
it consists of a single state that does not contain a self-loop and non-trivial otherwise.
An SCC𝐶 is accepting if it contains at least one accepting transition and inherently weak
iff either (i) every cycle in𝐶 contains a transition from 𝐹 or (ii) no cycle in𝐶 contains any
transitions from 𝐹. An SCC𝐶 is deterministic iff the BA (𝐶, 𝛿 |𝐶 , {𝑞}, ∅) for any 𝑞 ∈ 𝐶 is
deterministic. We denote inherently weak components as IWCs, accepting deterministic
components that are not inherently weak as DACs (deterministic accepting), and the
remaining accepting components as NACs (nondeterministic accepting). A BA A is
called an elevator automaton if it contains no NAC.

We assume that A contains no accepting transition outside its SCCs (no run can
cycle over such transitions). We use 𝛿SCC to denote the restriction of 𝛿 to transitions that
do not leave their SCCs, formally, 𝛿SCC = {𝑝 𝑎→ 𝑞 ∈ 𝛿 | 𝑝 and 𝑞 are in the same SCC}.
A partition block 𝑃 ⊆ 𝑄 of A is a nonempty union of its accepting SCCs, and a par-
titioning of A is a sequence 𝑃1, . . . , 𝑃𝑛 of pairwise disjoint partition blocks of A that
contains all accepting SCCs of A. Given a 𝑃𝑖 , let A𝑃𝑖

be the BA obtained from A by
removing colours from transitions outside 𝑃𝑖 . The following fact serves as the basis of
our decomposition-based complementation procedure.
Fact 1. L(A) = L(A𝑃1

) ∪ . . . ∪ L(A𝑃𝑛
)

The complement (automaton) of a BA A is a TELA that accepts the complement
language Σ𝜔 \ L(A) of L(A). In the paper, we call a state and a run of a complement
automaton a macrostate and a macrorun, respectively.

3 A Modular Complementation Algorithm
In a nutshell, the main idea of our BA complementation algorithm is to first decompose
a BA A into several partition blocks according to their properties, and then perform
complementation for each of the partition blocks (potentially using a different algorithm)
independently, using either a synchronous construction, synchronizing the complemen-
tation algorithms for all partition blocks in each step, or a postponed construction, which
complements the partition blocks independently and combines the partial results using
automata product construction. The decomposition of A into partition blocks can ei-
ther be trivial—i.e., with one block for each accepting SCC—, or more elaborate, e.g.,
a partitioning where one partition block contains all accepting IWCs, another contains
all DACs, and each NAC is given its own partition block. In this way, one can avoid
running a general complementation algorithm for unrestricted BAs with the state com-
plexity upper bound O((0.76𝑛)𝑛) and, instead, apply the most suitable complementation
procedure for each of the partition blocks. This comes with three main advantages:

1. The complementation algorithm for each partition block can be selected differently
in order to exploit the properties of the block. For instance, for partition blocks
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with IWCs, one can use complementation based on the breakpoint (the so-called
Miyano-Hayashi) construction [42] with O(3𝑛) macrostates (cf. Sec. 4.1), while
for partition blocks with only DACs, one can use an algorithm with the state com-
plexity O(4𝑛) based on an adaptation of the NCSB construction [5, 6, 11, 28] for
SDBAs (cf. Sec. 4.2). For NACs, one can choose between, e.g., rank- [10, 21,
24, 29, 34, 48] or determinization-based [43, 45, 46] algorithms, depending on the
properties of the NACs (cf. Sec. 6).

2. The different complementation algorithms can focus only on the respective blocks
and do not need to consider other parts of the BA. This is advantageous, e.g., for
rank-based algorithms, which can use this restriction to obtain tighter bounds on the
considered ranks (even tighter than using the refinement in [29]).

3. The obtained automaton can be more compact due to the use of a more general accep-
tance condition than Büchi [47]—in general, it can be a conjunction of any EL con-
ditions (one condition for each partition block), depending on the output of the com-
plementation procedures; this can allow a more compact encoding of the produced
automaton allowed by using a mixture of conditions. E.g., a deterministic BA can be
complemented with constant extra generated states when using a co-Büchi condition
rather than a linear number of generated states for a Büchi condition (see Sec. 5.1).

Those partial complementation algorithms then need to be orchestrated by a top-level
algorithm to produce the complement of A.

One might regard our algorithm as an optimization of an approach that would for
each partition block 𝑃 obtain a BA A𝑃 , complement A𝑃 using the selected algorithm,
and perform the intersection of all obtained A𝑃’s (which would, however, not be able
to get the upper bound for elevator automata that we give in Sec. 4.3). Indeed, we also
implemented the mentioned procedure (called the postponed approach, described in
Sec. 5.2) and compared it to our main procedure (called the synchronous approach).

3.1 Basic Synchronous Algorithm
In this section, we describe the basic synchronous top-level algorithm. Then, in Sec. 4,
we provide its instantiation for elevator automata and give a new upper bound for their
complementation; in Sec. 5, we discuss several optimizations of the algorithm; and in
Sec. 6, we give a generalization for unrestricted BAs. Let us fix a BA A = (𝑄, 𝛿, 𝐼, 𝐹)
and, w.l.o.g., assume that A is complete, i.e., |𝐼 | > 0 and all states 𝑞 ∈ 𝑄 have an
outgoing transition over all symbols 𝑎 ∈ Σ.

The synchronous algorithm works with partial complementation algorithms for BA’s
partition blocks. Each such algorithm Alg is provided with a structural condition 𝜑Alg
characterizing partition blocks it can complement. For a BA B, we use the notation B |=
𝜑 to denote that B satisfies the condition 𝜑. We say that Alg is a partial complementation
algorithm for a partition block 𝑃 if A𝑃 |= 𝜑Alg. We distinguish between Alg, a general
algorithm able to complement a partition block of a given type, andAlg𝑃 , its instantiation
for the partition block 𝑃. Each instance Alg𝑃 is required to provide the following:

– TAlg𝑃 — the type of the macrostates produced by the algorithm;
– ColoursAlg𝑃 = {0, . . . , 𝑘Alg𝑃 − 1} — the set of used colours;
– InitAlg𝑃 ∈ 2T

Alg𝑃 — the set of initial macrostates;
– SuccAlg𝑃 : (2𝑄 × TAlg𝑃 × Σ) → 2T

Alg𝑃 ×ColoursAlg𝑃 — a function returning the suc-
cessors of a macrostate such that SuccAlg𝑃 (𝐻, 𝑀, 𝑎) = {(𝑀1, 𝛼1), . . . , (𝑀𝑘 , 𝛼𝑘)},
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where 𝐻 is the set of all states of A reached over the same word, 𝑀 is the Alg𝑃’s
macrostate for the given partition block, 𝑎 is the input symbol, and each (𝑀𝑖 , 𝛼𝑖) is
a pair (macrostate, set of colours) such that 𝑀𝑖 is a successor of 𝑀 over 𝑎 w.r.t. 𝐻
and 𝛼𝑖 is a set of colours on the edge from 𝑀 to 𝑀𝑖 (𝐻 helps to keep track of new
runs coming into the partition block); and

– AccAlg𝑃 ∈ EL(ColoursAlg𝑃 ) — the acceptance condition.
Let 𝑃1, . . . , 𝑃𝑛 be a partitioning of A (w.l.o.g., we assume that 𝑛 > 0), and

Alg1, . . . , Alg𝑛 be a sequence of algorithms such that Alg𝑖 is a partial complemen-
tation algorithm for 𝑃𝑖 . Furthermore, let us define the following auxiliary renumbering
function 𝜆 as 𝜆(𝑐, 𝑗) = 𝑐 +∑ 𝑗−1

𝑖=1 |ColoursAlg
𝑖
𝑃𝑖 |, which is used to make the colours and

acceptance conditions from the partial complementation algorithms disjoint. We also
lift 𝜆 to sets of colours in the natural way, and also to EL conditions such that 𝜆(𝜑, 𝑗) has
the same structure as 𝜑 but each atom Inf (𝑐) is substituted with the atom Inf (𝜆(𝑐, 𝑗)) (and
likewise for Fin atoms). The synchronous complementation algorithm then produces
the TELA ModCompl(Alg1

𝑃1
, . . . , Alg𝑛

𝑃𝑛
,A) = (𝑄C , 𝛿C , 𝐼C , ΓC , pC ,AccC) with com-

ponents defined as follows (we use [𝑆𝑖]𝑛𝑖=1 to abbreviate 𝑆1 × · · · × 𝑆𝑛):
– 𝑄C = 2𝑄 × [TAlg

𝑖
𝑃𝑖 ]𝑛

𝑖=1,
– 𝐼C = {𝐼} × [InitAlg

𝑖
𝑃𝑖 ]𝑛

𝑖=1,
– ΓC = {0, . . . , 𝜆(𝑘Alg

𝑛
𝑃𝑛 − 1, 𝑛)},

– AccC =
∧𝑛

𝑖=1 𝜆(Acc
Alg𝑖

𝑃𝑖 , 𝑖),8and
– 𝛿C and pC are defined such that if

((𝑀 ′
1, 𝛼1), . . . , (𝑀 ′

𝑛, 𝛼𝑛)) ∈ [SuccAlg
𝑖
𝑃𝑖 (𝐻, 𝑀𝑖 , 𝑎)]𝑛𝑖=1,

then 𝛿C contains the transition 𝑡 : (𝐻, 𝑀1, . . . , 𝑀𝑛)
𝑎→ (𝛿(𝐻, 𝑎), 𝑀 ′

1, . . . , 𝑀
′
𝑛),

coloured by pC (𝑡) = ⋃{𝜆(𝛼𝑖 , 𝑖) | 1 ≤ 𝑖 ≤ 𝑛}, and 𝛿C is the smallest such a set.

In order for ModCompl to be correct, the partial complementation algorithms need to
satisfy certain properties, which we discuss below.

For a structural condition 𝜑 and a BA B = (𝑄, 𝛿, 𝐼, 𝐹), we define B |=𝑃 𝜑 iff B |= 𝜑,
𝑃 is a partition block of B, and B contains no accepting transitions outside 𝑃. We can
now provide the correctness condition on Alg.
Definition 1. We say that Alg is correct if for each BA B and partition block 𝑃 such
that B |=𝑃 𝜑Alg it holds that L(ModCompl(Alg𝑃 ,B)) = Σ𝜔 \ L(B).

The correctness of the synchronous algorithm (provided that each partial comple-
mentation algorithm is correct) is then established by Theorem 1.
Theorem 1. Let A be a BA, 𝑃1, . . . , 𝑃𝑛 be a partitioning of A, and Alg1, . . . , Alg𝑛

be a sequence of partial complementation algorithms such that Alg𝑖 is correct for 𝑃𝑖 .
Then, we have L(ModCompl(Alg1

𝑃1
, . . . , Alg𝑛

𝑃𝑛
,A)) = Σ𝜔 \ L(A).

4 Modular Complementation of Elevator Automata
In this section, we first give partial algorithms to complement partition blocks with
only accepting IWCs (Sec. 4.1) and partition blocks with only DACs (Sec. 4.2). Then,
in Sec. 4.3, we show that using our algorithm, the upper bound on the size of the
complement of elevator BAs is in O(4𝑛), which is exponentially better than the known
upper bound O(16𝑛) established in [29].
8 If we drop the condition that A is complete, we also need to add an accepting sink state

(representing the case for 𝐻 = ∅) with self-loops over all symbols marked by a new colour 𝑠 ,
and enrich AccC with . . . ∨ Inf ( 𝑠 ).
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4.1 Complementation of Inherently Weak Accepting Components
First, we introduce a partial algorithm MHwith the condition 𝜑MH specifying that all SCCs
in the partition block 𝑃 are accepting IWCs. Let 𝑃 be a partition block of A such that
A𝑃 |= 𝜑MH. Our proposed approach makes use of the Miyano-Hayashi construction [42].
Since in accepting IWCs, all runs are accepting, the idea of the construction is to accept
words such that all runs over the words eventually leave 𝑃.

Therefore, we use a pair (𝐶, 𝐵) of sets of states as a macrostate for complementing 𝑃.
Intuitively, we use 𝐶 to denote the set of all runs of A that are in 𝑃 (𝐶 for “check”). The
set 𝐵 ⊆ 𝐶 represents the runs being inspected whether they leave 𝑃 at some point (𝐵 for
“breakpoint”). Initially, we let 𝐶 = 𝐼 ∩ 𝑃 and also sample into breakpoint all runs in 𝑃,
i.e., set 𝐵 = 𝐶. Along reading an 𝜔-word 𝑤, if all runs that have entered 𝑃 eventually
leave 𝑃, i.e., 𝐵 becomes empty infinitely often, the complement language of 𝑃 should
contain 𝑤 (when 𝐵 becomes empty, we sample 𝐵 with all runs from the current 𝐶). We
formalize MH𝑃 as a partial procedure in the framework from Sec. 3.1 as follows:

– TMH𝑃 = 2𝑃 × 2𝑃 , ColoursMH𝑃 = { 0 }, InitMH𝑃 = {(𝐼 ∩ 𝑃, 𝐼 ∩ 𝑃)},
– AccMH𝑃 = Inf ( 0 ), and SuccMH𝑃 (𝐻, (𝐶, 𝐵), 𝑎) = {((𝐶′, 𝐵′), 𝛼)} where

• 𝐶′ = 𝛿(𝐻, 𝑎) ∩ 𝑃,

• 𝐵′ =

{
𝐶′ if 𝐵★ = ∅ for 𝐵★ = 𝛿(𝐵, 𝑎) ∩ 𝐶′,

𝐵★ otherwise, and
• 𝛼 =

{
{ 0 } if 𝐵★ = ∅ and
∅ otherwise.

We can see that checking whether 𝑤 is accepted by the complement of 𝑃 reduces to
check whether 𝐵 has been cleared infinitely often. Since every time when 𝐵 becomes
empty, we emit the colour 0 , we have that 𝑤 is not accepted by A within 𝑃 if and only
if 0 occurs infinitely often. Note that the transition function SuccMH𝑃 is deterministic,
i.e., there is exactly one successor.

Lemma 1. The partial algorithm MH is correct.

4.2 Complementation of Deterministic Accepting Components
In this section, we give a partial algorithm CSB with the condition 𝜑CSB specifying
that a partition block 𝑃 consists of DACs. Let 𝑃 be a partition block of A such that
A𝑃 |= 𝜑CSB. Our approach is based on the NCSB family of algorithms [5, 6, 11, 28]
for complementing SDBAs, in particular the NCSB-MaxRank construction [28]. The
algorithm utilizes the fact that runs in DACs are deterministic, i.e., they do not branch
into new runs. Therefore, one can check that a run is non-accepting if there is a time
point from which the run does not see accepting transitions any more. We call such
a run that does not see accepting transitions any more safe. Then, an 𝜔-word 𝑤 is not
accepted in 𝑃 iff all runs over 𝑤 in 𝑃 either (i) leave 𝑃 or (ii) eventually become safe.

For checking point (i), we can use a similar technique as in algorithm MH, i.e., use
a pair (𝐶, 𝐵). Moreover, to be able to check point (ii), we also use the set 𝑆 that contains
runs that are supposed to be safe, resulting in macrostates of the form (𝐶, 𝑆, 𝐵)9. To
make sure that all runs are deterministic, we will use 𝛿SCC instead of 𝛿 when computing
the successors of 𝑆 and 𝐵 since there may be nondeterministic jumps between different
DACs in 𝑃; we will not miss any run in 𝑃 since if a run moves between DACs of 𝑃, it

9 In contrast to MH, here we use 𝐶 ∪ 𝑆 rather than 𝐶 to keep track of all runs in 𝑃.
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Fig. 1: Left: BA Aex (dots represent accepting transitions). Right: the outcome
of ModCompl(CSB𝑃0

, MH𝑃1
,Aex ) with Acc : Inf ( 0 ) ∧ Inf ( 1 ). States are given as

(𝐻, (𝐶0, 𝑆0, 𝐵0), (𝐶1, 𝐵1)); to avoid too many braces, sets are given as sums.

can be seen as the run leaving 𝑃 and a new run entering 𝑃. Since a run eventually stays
in one SCC, this guarantees that the run will not be missed.

We formalize CSB𝑃 in the top-level framework as follows:

– TCSB𝑃 = 2𝑃 × 2𝑃 × 2𝑃 , InitCSB𝑃 = {(𝐼 ∩ 𝑃, ∅, 𝐼 ∩ 𝑃)},
– ColoursCSB𝑃 = { 0 }, AccCSB𝑃 = Inf ( 0 ), and
– SuccCSB𝑃 (𝐻, (𝐶, 𝑆, 𝐵), 𝑎) = 𝑈 such that

• if 𝛿𝐹 (𝑆, 𝑎) ≠ ∅, then 𝑈 = ∅ (Runs in 𝑆 must be safe),
• otherwise 𝑈 contains ((𝐶′, 𝑆′, 𝐵′), 𝑐) where

∗ 𝑆′ = 𝛿SCC(𝑆, 𝑎) ∩ 𝑃 , 𝐶′ = (𝛿(𝐻, 𝑎) ∩ 𝑃) \ 𝑆′,

∗ 𝐵′ =

{
𝐶′ if 𝐵★ = ∅ for 𝐵★ = 𝛿SCC (𝐵, 𝑎),
𝐵★ otherwise, and

∗ 𝑐 =

{
{ 0 } if 𝐵★ = ∅,
∅ otherwise.

Moreover, in the case 𝛿𝐹 (𝐵, 𝑎) = ∅, then 𝑈 also contains ((𝐶′′, 𝑆′′, 𝐶′′), { 0 })
where 𝑆′′ = 𝑆′ ∪ 𝐵′ and 𝐶′′ = 𝐶′ \ 𝑆′′.

Intuitively, when 𝛿𝐹 (𝐵, 𝑎) ∩𝛿SCC (𝐵, 𝑎) = ∅, we make the following guess: (i) either the
runs in 𝐵 all become safe (we move them to 𝑆) or (ii) there might be some unsafe runs
(we keep them in 𝐵). Since the runs in 𝐵 are deterministic, the number of tracked runs
in 𝐵 will not increase. Moreover, if all runs in 𝐵 are eventually safe, we are guaranteed
to move all of them to 𝑆 at the right time point, e.g., the maximal time point where all
runs are safe since the number of runs is finite.

As mentioned above, 𝑤 is not accepted within 𝑃 iff all runs over 𝑤 either (i) leave 𝑃

or (ii) become safe. In the context of the presented algorithm, this corresponds to
(i) 𝐵 becoming empty infinitely often and (ii) 𝛿𝐹 (𝑆, 𝑎) never seeing an accepting
transition. Then we only need to check if there exists an infinite sequence of macrostates
𝜌 = (𝐶0, 𝑆0, 𝐵0) . . . that emits 0 infinitely often.

Lemma 2. The partial algorithm CSB is correct.

It is worth noting that when the given partition block 𝑃 contains all DACs of A, we
can still use the construction above, while the construction in [28] only works on SDBAs.
Example 1. In Fig. 1, we give an example of the run of our algorithm on the BAAex . The
BA contains three SCCs, one of them (the one containing 𝑝) non-accepting (therefore,
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it does not need to occur in any partition block). The partition block 𝑃0 contains a single
DAC, so we can use algorithm CSB, and the partition block 𝑃1 contains a single accepting
IWC, so we can use MH. The resulting ModCompl(CSB𝑃0

, MH𝑃1
,Aex ) uses two colours,

0 from CSB and 1 from MH. The acceptance condition is Inf ( 0 ) ∧ Inf ( 1 ). ⊓⊔

4.3 Upper-bound for Elevator Automata Complementation
We now give an upper bound on the size of the complement generated by our algo-
rithm for elevator automata, which significantly improves the best previously known
upper bound of O(16𝑛) [29] to O(4𝑛), the same as for SDBAs, which are a strict
subclass of elevator automata [6] (we note that this upper bound cannot be obtained by
a determinization-based algorithm, since determinization of SDBAs is inΩ(𝑛!) [17,40]).

Theorem 2. Let A be an elevator automaton with 𝑛 states. Then there exists a BA
with O(4𝑛) states accepting the complement of L(A).

Proof (Sketch). Let 𝑄𝑊 be all states in accepting IWCs, 𝑄𝐷 be all states in DACs, and
𝑄𝑁 be the remaining states, i.e., 𝑄 = 𝑄𝑊 ⊎ 𝑄𝐷 ⊎ 𝑄𝑁 . We make two partition blocks:
𝑃0 = 𝑄𝑊 and 𝑃1 = 𝑄𝐷 and use MH and CSB respectively as the partial algorithms, with
macrostates of the form (𝐻, (𝐶0, 𝐵0), (𝐶1, 𝑆1, 𝐵1)). For each state 𝑞𝑁 ∈ 𝑄𝑁 , there are
two options: either 𝑞𝑁 ∉ 𝐻 or 𝑞𝑁 ∈ 𝐻. For each state 𝑞𝑊 ∈ 𝑄𝑊 , there are three options:
(i) 𝑞𝑊 ∉ 𝐶0, (ii) 𝑞𝑊 ∈ 𝐶0 \ 𝐵0, or (iii) 𝑞𝑊 ∈ 𝐶0 ∩ 𝐵0. Finally, for each 𝑞𝐷 ∈ 𝑄𝐷 , there
are four options: (i) 𝑞𝐷 ∉ 𝐶1∪𝑆1, (ii) 𝑞𝐷 ∈ 𝑆1, (iii) 𝑞𝐷 ∈ 𝐶1 \𝐵1, or (iv) 𝑞𝐷 ∈ 𝐶1∩𝐵1.
Therefore, the total number of macrostates is 2 · 2 |𝑄𝑁 | · 3 |𝑄𝑊 | · 4 |𝑄𝐷 | ∈ O(4𝑛) where
the initial factor 2 is due to degeneralization from two to one colour (the two colours
can actually be avoided by using our shared breakpoint optimization from Sec. 5.4). ⊓⊔

5 Optimizations of the Modular Construction
In this section, we propose optimizations of the basic modular algorithm. In Sec. 5.1,
we give a partial algorithm to complement initial partition blocks with DACs. Further,
in Sec. 5.2, we propose the postponed construction allowing to use automata reduction
on intermediate results. In Sec. 5.3, we propose the round-robin algorithm alleviating
the problem with the explosion of the size of the Cartesian product of partial successors.
In Sec. 5.4, we provide an optimization for partial algorithms that are based on the
breakpoint construction, and, finally, in Sec. 5.5, we show how to employ simulation to
decrease the size of macrostates in the synchronous construction.

5.1 Complementation of Initial Deterministic Partition Blocks
Our first optimization is an algorithm CoB for a subclass of partition blocks containing
DACs. In particular, the condition 𝜑CoB specifies that the partition block 𝑃 is deterministic
and can be reached only deterministically in A (i.e., A𝑃 after removing redundant states
is deterministic). Then, we say that 𝑃 is an initial deterministic partition block. The
algorithm is based on complementation of deterministic BAs into co-Büchi automata.

The algorithm CoB𝑃 is formalized below:

– TCoB𝑃 = 𝑃 ∪ {∅}, InitCoB𝑃 = 𝐼 ∩ 𝑃, ColoursCoB𝑃 = { 0 }, AccCoB𝑃 = Fin( 0 ),
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– SuccCoB𝑃 (𝐻, 𝑞, 𝑎) = {(𝑞′, 𝛼)} where

• 𝑞′ =

{
𝑟 if 𝛿(𝐻, 𝑎) ∩ 𝑃 = {𝑟} and
∅ otherwise,

• 𝛼 =

{
{ 0 } if 𝑞

𝑎→ 𝑞′ ∈ 𝐹 and
∅ otherwise.

Intuitively, all runs reach 𝑃 deterministically, which means that over a word 𝑤, at
most one run can reach 𝑃 (so |InitCoB𝑃 | = 1). Thus, we have |𝛿(𝐻, 𝑤 𝑗 ) ∩ 𝑃 | = 1 for
some 𝑗 ≥ 0 if there is a run over 𝑤 to 𝑃, corresponding to 𝛿(𝐻, 𝑎) ∩ 𝑃 = {𝑟} in the
construction. To check whether𝑤 is not accepted in 𝑃, we only need to check whether the
run from 𝑟 ∈ 𝑃 over𝑤 visits accepting transitions only finitely often. We give an example
of complementation of a BA containing an initial deterministic partition block in [27].

Lemma 3. The partial algorithm CoB is correct.

5.2 Postponed Construction
The modular synchronous construction from Sec. 3.1 utilizes the assumption that in the
simultaneous construction of successors for each partition block over 𝑎, if one partial
macrostate 𝑀𝑖 does not have a successor over 𝑎, then there will be no successor of the
(𝐻, 𝑀1, . . . , 𝑀𝑛) macrostate in 𝛿C as well. This is useful, e.g., for inclusion testing,
where it is not necessary to generate the whole complement. On the other hand, if we
need to generate the whole automaton, a drawback of the proposed modular construction
is that each partial complementation algorithm itself may generate a lot of useless states.
In this section, we propose the postponed construction, which complements the partition
blocks (with their surrounding) independently and later combines the intermediate
results to obtain the complement automaton for A. The main advantage of the postponed
construction is that one can apply automata reduction (e.g., based on removing useless
states or using simulation [1,9,13,18]) to decrease the size of the intermediate automata.

In the postponed construction, we use product-based BA intersection operation (i.e.,
for two TELAs B1 and B2, a product automaton B1 ∩ B2 satisfying L(B1 ∩ B2) =

L(B1) ∩ L(B2)10). Further, we employ a function Red performing some language-
preserving reduction of an input TELA. Then, the postponed construction for an elevator
automaton A with a partitioning 𝑃1, . . . , 𝑃𝑛 and a sequence Alg1, . . . , Alg𝑛 where Alg𝑖
is a partial complementation algorithm for 𝑃𝑖 , is defined as follows:

PostpCompl(Alg1𝑃1
, . . . , Alg𝑛𝑃𝑛

,A) =
𝑛⋂
𝑖=1

Red
(
ModCompl(Alg𝑖𝑃𝑖

,A𝑃𝑖
)
)
. (2)

The correctness of the construction is then summarized by the following theorem.

Theorem 3. Let A be a BA, 𝑃1, . . . , 𝑃𝑛 be a partitioning of A, and Alg1, . . . , Alg𝑛

be a sequence of partial complementation algorithms such that Alg𝑖 is correct for 𝑃𝑖 .
Then, L(PostpCompl(Alg1

𝑃1
, . . . , Alg𝑛

𝑃𝑛
,A)) = Σ𝜔 \ L(A).

5.3 Round-Robin Algorithm
The proposed basic synchronous approach from Sec. 3.1 may suffer from the combinato-
rial explosion because the successors of a macrostate are given by the Cartesian product
of all successors of the partial macrostates. To alleviate this explosion, we propose
a round-robin top-level algorithm. Intuitively, the round-robin algorithm actively tracks

10 Alternatively, one might also avoid the product and generate linear-sized alternating TELA,
but working with those is usually much harder and not used in practice.
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runs in only one partial complementation algorithm at a time (while other algorithms
stay passive). The algorithm periodically changes the active algorithm to avoid starvation
(the decision to leave the active state is, however, fully directed by the partial comple-
mentation algorithm). This can alleviate an explosion in the number of successors for
algorithms that generate more than one successor (e.g., for rank-based algorithms where
one needs to make a nondeterministic choice of decreasing ranks of states in order to be
able to accept [10, 21, 24, 29, 34, 48]; such a choice needs to be made only in the active
phase while in the passive phase, the construction just needs to make sure that the run
is consistent with the given ranking, which can be done deterministically).

The round-robin algorithm works on the level of partial complementation round-
robin algorithms. Each instance of the partial algorithm provides passive types to rep-
resent partial macrostates that are passive and active types to represent currently active
partial macrostates. In contrast to the basic partial complementation algorithms from
Sec. 3.1, which provide only a single successor function, the round-robin partial al-
gorithms provide several variants of them. In particular, SuccPass returns (passive)
successors of a passive partial macrostate, Lift gives all possible active counterparts
of a passive macrostate, and SuccAct returns successors of an active partial macrostate.
If SuccAct returns a partial macrostate of the passive type, the round-robin algorithm
promotes the next partial algorithm to be the active one. For instance, in the round-robin
version of CSB, the passive type does not contain the breakpoint and only checks that
safe runs stay safe, so it is deterministic. Due to space limitations, we give a formal
definition and more details about the round-robin algorithm in [27].

5.4 Shared Breakpoint
The partial complementation algorithms CSB and MH (and later RNK defined in Sec. 6)
use a breakpoint to check whether the runs under inspection are accepting or not. As
an optimization, we consider merging of breakpoints of several algorithms and keeping
only a single breakpoint for all supported algorithms. The top-level algorithm then needs
to manage only one breakpoint and emit a colour only if this sole breakpoint becomes
empty. This may lead to a smaller number of generated macrostates since we synchronize
the breakpoint sampling among several algorithms. The second benefit is that this allows
us to generate fewer colours (in the case of elevator automata complemented using
algorithms CSB and MH, we get only one colour).

5.5 Simulation Pruning
Our construction can be further optimized by a simulation (or other compatible) relation
for pruning macrostates.11 A simulation is, broadly speaking, a relation ≼ ⊆ 𝑄 ×
𝑄 implying language inclusion of states, i.e., ∀𝑝, 𝑞 ∈ 𝑄 : 𝑝 ≼ 𝑞 =⇒ L(A[𝑝]) ⊆
L(A[𝑞]). Intuitively, our optimization allows to remove a state 𝑝 from a macrostate 𝑀

if there is also a state 𝑞 in 𝑀 such that (i) 𝑝 ≼ 𝑞, (ii) 𝑝 is not reachable from 𝑞, and
(iii) 𝑝 is smaller than 𝑞 in an arbitrary total order over 𝑄 (this serves as a tie-breaker for
simulation-equivalent mutually unreachable states). The reason why 𝑝 can be removed

11 This optimization can be seen as a generalization of the simulation-based pruning techniques
that appeared, e.g., in [28, 41] in the context of concrete determinization/complementation
procedures. Here, we generalize the technique to all procedures that are based on run tracking.
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is that its behaviour can be completely mimicked by 𝑞. In our construction, we can then,
roughly speaking, replace each call to the functions 𝛿(𝑈, 𝑎) and 𝛿𝐹 (𝑈, 𝑎), for a set of
states𝑈, by pr (𝛿(𝑈, 𝑎)) and pr (𝛿𝐹 (𝑈, 𝑎)) respectively in each partial complementation
algorithm, as well as in the top-level algorithm, where pr (𝑆) is obtained from 𝑆 by
pruning all eligible states. The details are provided in [27].

6 Modular Complementation of Non-Elevator Automata
A non-elevator automaton A contains at least one NAC, besides possibly other IWCs
or DACs. To complement A in a modular way, we apply the techniques seen in Sec. 4
to its DACs and IWCs, while for its NACs we resort to a general complementation
algorithm Alg. In theory, rank- [34], slice- [32], Ramsey- [50], subset-tuple- [2], and
determinization- [46] based complementation algorithms adapted to work on a single
partition block instead of the whole automaton are all valid instantiations of Alg. Below,
we give a high-level description of two such algorithms: rank- and determinization-based.

Rank-based partial complementation algorithm. Working on each NAC independently
benefits the complementation algorithm even if the input BA contains only NACs.
For instance, in rank-based algorithms [10, 21, 24, 29, 33, 34, 48], the fact whether all
runs of A over a given 𝜔-word 𝑤 are non-accepting is determined by ranks of states,
given by the so-called ranking functions. A ranking function is a (partial) function
from 𝑄 to 𝜔. The main idea of rank-based algorithms is the following: (i) every run is
initially nondeterministically assigned a rank, (ii) ranks can only decrease along a run,
(iii) ranks need to be even every time a run visits an accepting transition, and (iv) the
complement automaton accepts iff all runs eventually get trapped in odd ranks12. In the
standard rank-based procedure, the initial assignment of ranks to states in (i) is a function
𝑄 ⇀ {0, . . . , 2𝑛 − 1} for 𝑛 = |𝑄 |. Using our framework, we can, however, significantly
restrict the considered ranks in a partition block 𝑃 to only 𝑃 ⇀ {0, . . . , 2𝑚 − 1} for
𝑚 = |𝑃 | (here, it makes sense to use partition blocks consisting of single SCCs). One can
further reduce the considered ranks using the techniques introduced in, e.g., [24, 29].

In order to adapt the rank-based construction as a partial complementation algorithm
RNK in our framework, we need to extend the ranking functions by a fresh “box state”
representing states outside the partition block. The ranking function then uses to
represent ranks of runs newly coming into the partition block. The box-extension also
requires to change the transition in a way that always represents reachable states from
the outside. We provide the details of the construction, which includes the MaxRank
optimization from [24], in [27].

Determinization-based partial complementation algorithm. In [29, 52] we can see that
determinization-based complementation is also a good instantiation of Alg in practice,
so, we also consider the standard Safra-Piterman determinization [43,45,46] as a choice
of Alg for complementing NACs. Determinization-based algorithms use a layered subset
construction to organize all runs over an𝜔-word𝑤. The idea is to identify a subset 𝑆 ⊆ 𝐻

of reachable states that occur infinitely often along reading𝑤 such that between every two
occurrences of 𝑆, we have that (i) every state in the second occurrence of 𝑆 can be reached
by a state in the first occurrence of 𝑆 and (ii) every state in the second occurrence is

12 Since we focus on intuition here, we use runs rather than the directed acyclic graphs of runs.
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Table 1: Statistics for our experiments. The column unsolved classifies unsolved in-
stances by the form timeouts : out of memory : other failures. For the cases of VBS we
provide just the number of unsolved cases. The columns states and runtime provide
mean : median of the number of states and runtime, respectively.

tool solved unsolved states runtime

Kofola𝑆 39,738 89 : 10 : 0 76 : 3 0.32 : 0.03
Kofola𝑃 39,750 76 : 11 : 0 86 : 3 0.41 : 0.03
VBS+ 39,834 3 78 : 3 0.05 : 0.01
VBS− 39,834 3 96 : 3 0.05 : 0.01

tool solved unsolved states runtime

COLA 39,814 21 : 0 : 2 80 : 3 0.17 : 0.02
Ranker 38,837 61 : 939 : 0 45 : 4 3.31 : 0.01
Seminator 39,026 238 : 573 : 0 247 : 3 1.98 : 0.03
Spot 39,827 8 : 0 : 2 160 : 4 0.08 : 0.02

reached by a state in the first occurrence while seeing an accepting transition. According
to König’s lemma, there must then be an accepting run of A over 𝑤.

The construction initially maintains only one set 𝐻: the set of reachable states.
Since 𝑆 as defined does not necessarily need to be 𝐻, every time there are runs visiting
accepting transitions, we create a new subset 𝐶 for those runs and remember which
subset 𝐶 is coming from. This way, we actually organize the current states of all runs
into a tree structure and do subset construction in parallel for the sets in each tree node.
If we find a tree node whose labelled subset, say 𝑆′, is equal to the union of states in
its children, we know the set 𝑆′ satisfies the condition above and we remove all its child
nodes and emit a good event. If such good event happens infinitely often, it means that
𝑆′ also occurs infinitely often. So in complementation, we only need to make sure those
good events only happen for finitely many times. Working on each NAC separately also
benefits the determinization-based approach since the number of possible trees will be
less with smaller number of reachable states. Following the idea of [37], to adapt for
the construction as the partial complementation algorithm, we put all the newly coming
runs from other partition blocks in a newly created node without a parent node. In this
way, we actually maintain a forest of trees for the partial complementation construction.
We denote the determinization-based construction as DET; cf. [37] for details.

7 Experimental Evaluation
To evaluate the proposed approach, we implemented it in a prototype tool Kofola [25]
(written in C++) built on top of Spot [16] and compared it against COLA [37],
Ranker [28] (v. 2), Seminator [5] (v. 2.0), and Spot [15, 16] (v. 2.10.6), which are
the state of the art in BA complementation [28, 29, 37]. Due to space restrictions, we
give results for only two instantiations of our framework: Kofola𝑆 and Kofola𝑃 . Both
instantiations use MH for IWCs, CSB for DACs, and DET for NACs. The partitioning
selection algorithm merges all IWCs into one partition block, all DACs into one par-
tition block, and keeps all NACs separate. Simulation-based pruning from Sec. 5.5 is
turned on, and round-robin from Sec. 5.3 is turned off (since the selected algorithms
are quite deterministic). Kofola𝑆 employs the synchronous and Kofola𝑃 employs the
postponed strategy. We also consider the Virtual Best Solver (VBS), i.e., a virtual tool
that would choose the best solver for each single benchmark among all tools (VBS+) and
among all tools except both versions of Kofola (VBS−). We ran our experiments on an
Ubuntu 20.04.4 LTS system running on a desktop machine with 16 GiB RAM and an
Intel 3.6 GHz i7-4790 CPU. To constrain and collect statistics about the executions of
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Fig. 2: Scatter plots comparing the numbers of states generated by the tools.

the tools, we used BenchExec [3] and imposed a memory limit of 12 GiB and a timeout
of 10 minutes; we used Spot to cross-validate the equivalence of the automata generated
by the different tools. An artifact reproducing our experiments is available as [26].

As our data set, we used 39,837 BAs from the automata-benchmarks reposi-
tory [36] (used before by, e.g., [28, 29, 37]), which contains BAs from the following
sources: (i) randomly generated BAs used in [52] (21,876 BAs), (ii) BAs obtained from
LTL formulae from the literature and randomly generated LTL formulae [5] (3,442 BAs),
(iii) BAs obtained from Ultimate Automizer [11] (915 BAs), (iv) BAs obtained from
the solver for first-order logic over Sturmian words Pecan [31] (13,216 BAs), (v) BAs
obtained from an S1S solver [23] (370 BAs), and (vi) BAs from LTL to SDBA trans-
lation [49] (18 BAs). From these BAs, 23,850 are deterministic, 6,147 are SDBAs (but
not deterministic), 4,105 are elevator (but not SDBAs), and 5,735 are the rest.

In Table 1 we present an overview of the outcomes. Despite being a prototype,
Kofola can already complement a large portion of the input automata, with very few
cases that can be complemented successfully only by Spot or COLA. Regarding the
mean number of states, Kofola𝑆 has the least mean value from all tools (except
Ranker, which, however, had 1,000 unsolved cases) Moreover, Kofola significantly
decreased the mean number of states when included into the VBS: from 96 to 78!
We consider this to be a strong validation of the usefulness of our approach. Regarding
the runtime, both versions of Kofola are rather similar; Kofola is just slightly slower
than Spot and COLA but much faster than both Ranker and Seminator (cf. [27]).

In Fig. 2 we present a comparison of the number of states generated by Kofola𝑆 and
other tools; we omit VBS+ since the corresponding plot can be derived from the one for
VBS− (since Ranker and Seminator only output BAs, we compare the sizes of outputs
transformed into BAs for all tools to be fair). In the plots, the number of benchmarks
represented by each mark is given by its colour; a mark above the diagonal means that
Kofola𝑆 generated a BA smaller than the other tool while a mark on the top border
means that the other tool failed while Kofola𝑆 succeeded, and symmetrically for the
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bottom part and the right-hand border. Dashed lines represent the maximum number of
states generated by one of the tools in the plot, axes are logarithmic.
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From the results, Kofola𝑆 clearly domi-
nates state-of-the-art tools that are not based
on SCC decomposition (Ranker, Spot, Sem-
inator). The outputs are quite comparable to
COLA, which also uses SCC decomposition
and can be seen as an instantiation of our frame-
work. This supports our intuition that working
on the single SCCs helps in reducing the size
of the final automaton, confirming the validity
of our modular mix-and-match Büchi comple-
mentation approach. Lastly, in the figure in the right we compare our algorithm for
elevator automata with the one in Ranker (the only other tool with a dedicated algo-
rithm for this subclass). Our new algorithm clearly dominates the one in Ranker.

8 Related Work
To the best of our knowledge, we provide the first general framework where one can
plug-in different BA complementation algorithms while taking advantage of the specific
structure of SCCs. We will discuss the difference between our work and the literature.

The breakpoint construction [42] was designed to complement BAs with only IWCs,
while our construction treats it as a partial complementation procedure for IWCs and
differs in the need to handle incoming states from other partition blocks. The NCSB
family of algorithms [5, 6, 11, 28] for SDBAs do not work when there are nondeter-
ministic jumps between DACs; they can, however, be adapted as partial procedures for
complementing DACs in our framework, cf. Sec. 4.2. In [29], a deelevation-based pro-
cedure is applied to elevator automata to obtain BAs with a fixed maximum rank of 3,
for which a rank-based construction produces a result of the size in O(16𝑛). In our work,
we exploit the structure of the SCCs much more to obtain an exponentially better upper
bound of O(4𝑛) (the same as for SDBAs). The upper bound O(4𝑛) for complementing
unambiguous BAs was established in [39], which is orthogonal to our work, but seems
to be possible to incorporate into our framework in the future.

There is a huge body of work on complementation of general BAs [2, 5, 7, 8, 10,
19–22, 24, 29, 32, 34, 43, 45, 46, 48, 50, 52, 53]; all of them work on the whole graph
structure of the input BAs. Our framework is general enough to allow including all of
them as partial complementation procedures for NACs. On the contrary, our framework
does not directly allow (at least in the synchronous strategy) to use algorithms that do
not work on the structure of the input BA, such as the learning-based complementation
algorithm from [38]. The recent determinization algorithm from [37], which serves as
our inspiration, also handles SCCs separately (it can actually be seen as an instantiation of
our framework). Our current algorithm is, however, more flexible, allowing to mix-and-
match various constructions, keep SCCs separate or merge them into partition blocks,
and allows to obtain the complexity O(4𝑛), while [37] only allowed O(𝑛!) (which is
tight since SDBA determinization is in Ω(𝑛!) [17, 40]).

Regarding the tool Spot [15, 16], it should not be perceived as a single comple-
mentation algorithm. Instead, Spot should be seen as a highly engineered platform
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utilizing breakpoint construction for inherently weak BAs, NCSB [6, 11] for SDBAs,
and determinization-based complementation [43, 45, 46] for general BAs, while using
many other heuristics along the way. Seminator uses semi-determinization [4,5,14] to
make sure the input is an SDBA and then uses NCSB [6,11] to compute the complement.

9 Conclusion and Future Work
We have proposed a general framework for BA complementation where one can plug-in
different partial complementation procedures for SCCs by taking advantage of their
specific structure. Our framework not only obtains an exponentially better upper bound
for elevator automata, but also complements existing approaches well. As shown by the
experimental results (especially for the VBS), our framework significantly improves the
current portfolio of complementation algorithms.

We believe that our framework is an ideal testbed for experimenting with different
BA complementation algorithms, e.g., for the following two reasons: (i) One can develop
an efficient complementation algorithm that only works for a quite restricted sub-class of
BAs (such as the algorithm for initial deterministic SCCs that we showed in Sec. 5.1) and
the framework can leverage it for complementation of all BAs that contain such a sub-
structure. (ii) When one tries to improve a general complementation algorithm, they can
focus on complementation of the structurally hard SCCs (mainly the nondeterministic
accepting SCCs) and do not need to look for heuristics that would improve the algorithm
if there were some easier substructure present in the input BA (as was done, e.g., in [29]).
From how the framework is defined, it immediately offers opportunities for being used
for on-the-fly BA language inclusion testing, leveraging the partial complementation
procedures present. Finally, we believe that the framework also enables new directions
for future research by developing smart ways, probably based on machine learning, of
selecting which partial complementation procedure should be used for which SCC, based
on their features. In future, we want to incorporate other algorithms for complementation
of NACs, and identify properties of SCCs that allow to use more efficient algorithms
(such as unambiguous NACs [39]). Moreover, it seems that generalizing the Delayed
optimization from [24] on the top-level algorithm could also help reduce the state space.
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